
www.reowocv.com

THE PEAK OF QUALITY

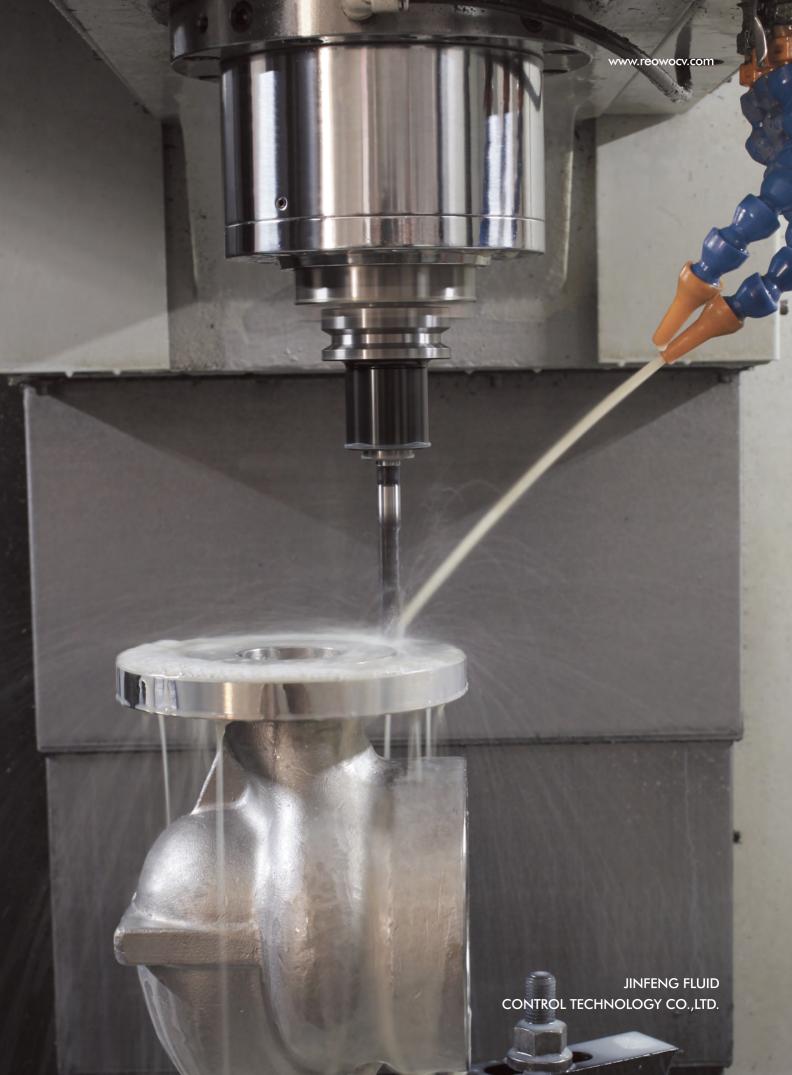
Linear Motion Control Valve

演绎巅峰品质

THE PEAK OF QUALITY

我们一直致力于控制阀的研发与制造 为您提供更好的服务和最佳的产品

About us


Jinfeng Fluid Control Technology Co., Ltd.(REOWO) is a professional manufacturer of multitypes control valve for industrial automation located in China, which has nearly 16 years of control valve manufacturing experience. REOWO is committed to design, development, manufacturing and sales of high—grade control valve, and occupies more than 10000 square meters. It has about 120 staffs, 20 senior professional titles employees and more than 100 workers. REOWO has excellent equipment, strong technical power, and first—class inspect means. Comprehensive quality control system, keep the production in reasonable structure and reliable performance. It include chemical analysis, mechanical tests, ultrasonic thickness testing, MT, PT and RT etc. We implement advanced ERP computerized management system and 5S management system, and qualified with API, CE, TS, EAC, SIL, ISO certification.

The main products of the REOWO contain pneumatic control valve, electric control valve, self–operated regulator, pneumatic actuator, pneumatic accessories. The material of the valves covers covers WCB, Stainless Steel ,Special materials and etc. The nominal diameter is from 1/2" to 24" (15mm~600mm) . The nominal pressure is from 2.0Mpa to 42.0Mpa (150LB~2500LB). Working temperature is between −196°C~600°C。 REOWO keep every products in the guarantee period of 18 months after use, implement "three guarantees" quality solution. In quality service of products, we will reply within 24 hours and to make appropriate treatment advice after receiving your fax or Email.

Brief Introduction REOWO

THE PEAK OF QUALITY

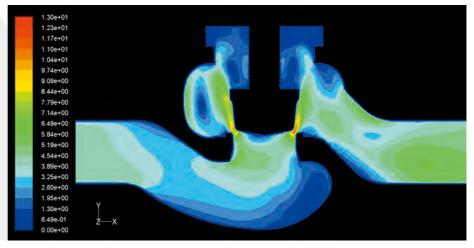
REOWO carry out technological innovation, managing innovation, and service innovation, to lead the market. Improvement of the sales network, and quality tracking service of product, earned the unanimous endorsement of customers. High aspirations, forge ahead, REOWO is willing to cooperate with friends all walks of life sincerely, and seek common development, as well as quality, fast and comprehensive service return to customers, working together to write a new chapter in the national industry!

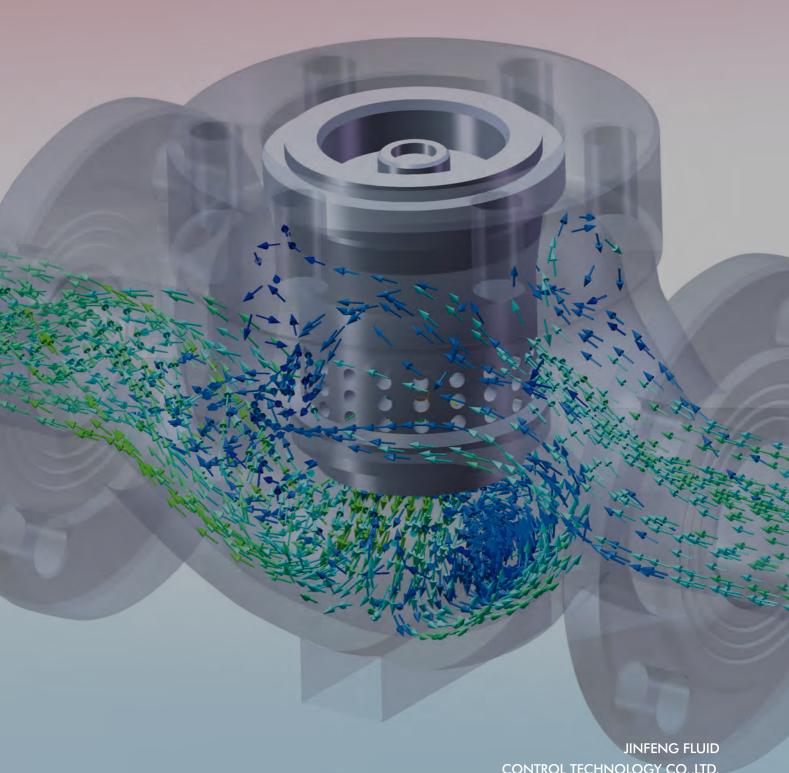
Advanced Manufacturing Technology REOWO

THE PEAK OF QUALITY

► Advanced equipment

The latest machining equipment, which is widely applied to manufacturing reowo valves, includes a large batch of CNC machining tools (such as machining centers, CNC horizontal lathes, vertical lathes and drilling lathes) and ERP manufacturing resources integration management systems. In addition, the data between all machining workshops in reowo are mutually shared in the Intranet through optical cables, which has facilitated us to effectively centralize manufacturing resources, enhance production efficiency and efficiently improve our machining quality and process control.




Desing and development

The technical R&D center of reowo makes use of the most advanced computer technology to enhance the quality of the existing products and develop new valve products. The design concept of reowo is to develop a kind of safe valves with cost advantage. During the new product design period, we introduce the latest engineering software such as Auto CAD and Solidworks and adopt the advanced FEA technology to verify if the design of new products is feasible before they are put into batch production, so that their design and development time is greatly shortened and the safety of final products and their optimal cost structure are ensured.

Strong Research And Development REOWO

THE PEAK OF QUALITY

CONTROL TECHNOLOGY CO.,LTD.

▶ Forward

To further meet user requirements for different service conditions, the 100 Series linear motion control valves are new generation high performance products independently developed by reowo Company on the basis of many years of experience in design, production and field use after incorporating internationally advanced design concept.

With its quality, performance, life, maintenance, appearance and cost being included into the core of design, the product is featured by precise control, fast response, tight shut-off, compact structure, simple maintenance, long service life, low cost, etc.

• Easy disassembly structural design

The seat is fixed by the axial pressure of the bonnet and fixing cage, with such features as automatic alignment during installation, good concentricity, high precision, tight shut-off, low leakage, compact structure, simple maintenance, low use cost, etc.

• Top guided structural design

The friction and blocking between the cage and plug can be effectively avoided so that the valve service life is long with good stability and reliability.

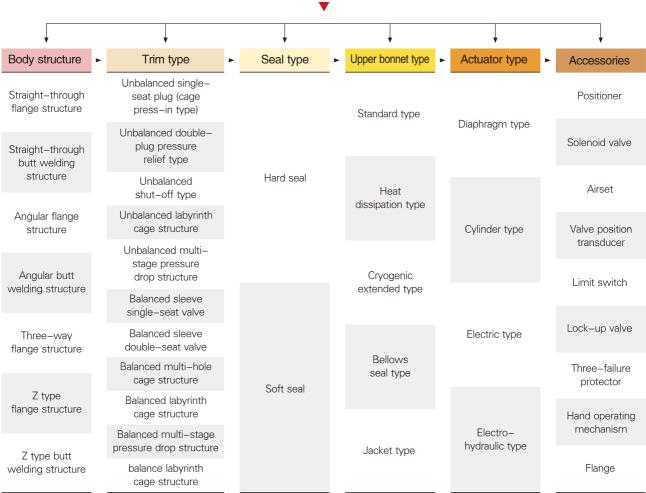
· Innovative packing design

Good sealing performance, low friction, high control precision, fast response, small dead band

· Standard part design

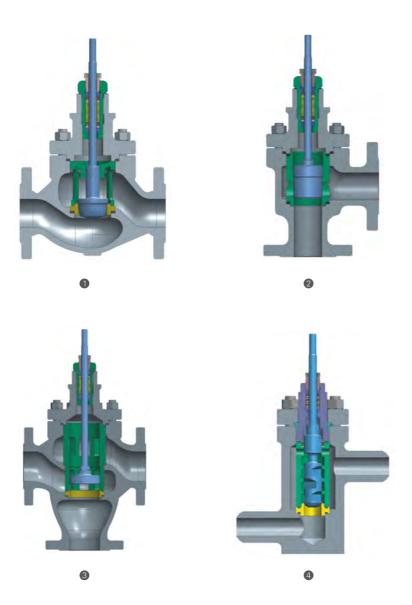
Good interchangeability of parts lowers inventory of users and reduces use cost.

Contents


- P002 ► reowo control valve
- P004 ► Body type
- P006 ► Bonnet type
- P008 ► Body materials
- P009-P011 ▶ Trim materials
- P013 ► Gasket
- P015 ► Flow characteristic
- P017 ▶ Packing structure
- P019 ▶ Bellows packing box structure
- P021 ► Seal ring solutions in the balanced trim
- P023 ► Introduction to the balanced seal ring
- P025 ► Connection type
- P027 ► 10P Series control valve
- P028 ► Exploded view of 10P Series
- P031 ► 10T Series control valve
- P031 ► Exploded view of 10TSeries
- P033 ► 10G Series control valve
- P034 ► Exploded view of 10G Series
- P036 ► 10D Series control valve
- P037 ► Exploded view of 10D Series
- P039 ► 10S Series control valve
- P040 ► Exploded view of 10S Series
- P042 ► 10S Series control valve (unbalanced trim)
- P043 ► Exploded view of 10S Series (unbalanced trim)
- P045 ► 10Q Series control valve
- P046 ► Exploded view of 10Q Series
- P048 ► 13H/F Series control valve
- P049 ► Exploded view of 13H/F Series

- P051 ► 10PF Series control valve
- P052 ► Exploded view of 10PF Series
- P054 ► 10M Series control valve (unbalanced trim)
- P055 ► Exploded view of 10M Series (unbalanced trim)
- P057 ► 10M Series control valve
- P058 ► Exploded view of 10M Series
- P060 ► Control principle of labyrinth control valve
- *P062* ► Cavitation cause and solution
- P064 ► Design of labyrinth disc
- P065 ► 100 series rated CV and stroke
- P067 Maximum allowable pressure differential—10P series control valve
- P069 Maximum allowable pressure differential, 10T/G series control valve
- *P070-P072* ► Size table
- P074 ▶ Pneumatic actuator
- P076 ► Hand operating mechanism
- P078 ► Connection dimensions of pneumatic actuators
- P079-P080 ► Commonly used accessories of reowo
- P081-P084 Commonly used control loops of reowo control valves
- P085 ► GB steel pipe flanges JB/T79.1~94
- P086 ► GB steel pipe flanges JB/T79.2~4-94
- P087 ► ANSI steel pipe flanges ANSI B16.5
- P088 ► Valve booy welding joint (ANSI900, 1500, 2500)
- P090 ► Attachment 1
- P091 ► Attachment 2
- P092-P094 ► Attachment 3
- P096 ► Model establishment descriptions

reowo control valve


Control valve configuration

Note:

- The above diagram is the configuration guide diagram for linear motion control valves. Please select the most suitable structure for control valves according to the options indicated by the arrow so as to meet the requirements of technological parameters.
- · The catalog only covers some important contents in the above configuration guide diagram.
- · Please check the relevant contents you are concerned with according to page P.
- If you need any detailed parameters for the electric actuator, electro-hydraulic actuator and relevant accessories that are not elaborated in the catalog, please consult reowo engineers.
- The allowable maximum differential pressure when the control valve is equipped with the actuator, the CV value
 corresponding to the valve opening and other detailed control valve performance parameters are not listed in the catalog.
 If you need to know them, please consult reowo engineers or select the most suitable control valve after calculating
 technological parameters according to the model selection software of reowo Company.

▶ Body type

Straight-through body

The straight-through body has an S streamlined flow channel and the inner wall is smooth with equal cross-sectional area. It has such features as low pressure loss, high flow rate, stable flow, etc.

Angular body

Except that its appearance is rectangular, the angular body is similar to the straight—through body in other aspects. It has such features as compact structure, simple flow channel, low resistance, etc. It is especially suitable for media that may easily be coked, blocked, media of high viscosity and other service conditions.

Three-way body

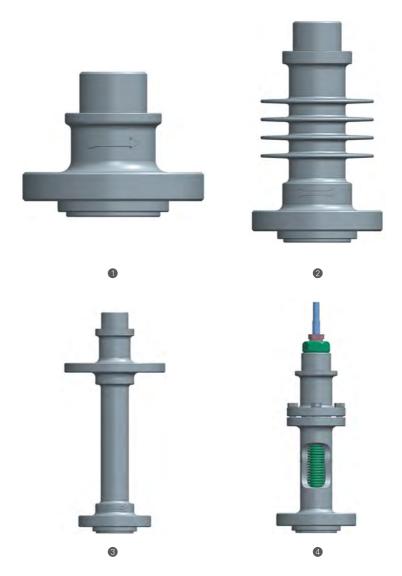
The three—way body includes converging type and diverging type. It is mainly used for proportional control or bypass control with small floor space and low cost.

Z type body

The Z type body is mainly used for high pressure service conditions. It is integrally forged. It has high pressure withstanding performance. The flow channel is simple and whirlpool or backflow does not easily occur. The possibility of flash evaporation and cavitation under high differential pressure service conditions is reduced.

▶ Bonnet type

Standard bonnet


The standard bonnet is normal temperature upper bonnet. The bonnet material is the same as that of the body, playing the function of sealing the body and linking the actuator.

Working temperature: -30°C - 230°C

High temperature bonnet

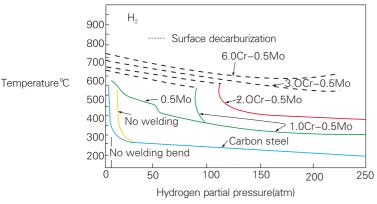
The high temperature bonnet is specially designed for high temperature service conditions. The heat sink enhances the contact area between the bonnet and the surrounding air so as to play the function of heat dissipation. It can effectively protect the packing and actuator.

Working temperature: $+230^{\circ}\text{C} - 530^{\circ}\text{C}$ $-45^{\circ}\text{C} - -5^{\circ}\text{C}$

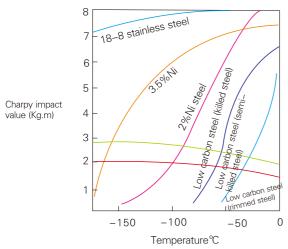
Cryogenic extended bonnet

The cryogenic extended bonnet is suitable for media under low temperature status (such as liquid oxygen, liquid nitrogen). This kind of upper bonnet can effectively protect the packing and actuator. The standard material adopted is 304 or 316. Materials of different expansion coefficients can also be adopted according to different service conditions.

Working temperature: -196°C - 45°C


Metal bellows seal bonnet

The metal bellows seal bonnet is installed with the stainless steel bellows assembly to isolate the media from the outside and ensure the stem will make upward and downward movement. In addition, the upper bonnet is also provided with the standard packing box to ensure the media will not leak and cause waste or produce pollution to the environment.


Working temperature: −60°C − 530°C

Body materials

Basic principles of selecting the materials

Range of application of carbon steel and alloy steel under high temperature and high pressure hydrogen

Cryogenic impact value of various materials (5mm U notch)

▲ Anti-corrosion materials

The corrosion of metal materials include general corrosion, crevice corrosion, intergranular corrosion, pitting corrosion, stress corrosion, etc. There is no material that can resist all the above corrosion. Actually, the corrosion of materials is related to the fluid type, concentration, temperature, flow velocity, and also depends on if the fluid contains oxidant. Thus, the selection of materials becomes more complex.

The anti–corrosion materials commonly used in control valves mainly include PTFE, F46 and other lining materials or high–cost austenitic stainless steel, 20# alloy steel, Hastelloy B, Hastelloy C, titanium and other special metals.

High temperature materials

The issues such as high temperature strength, change of metallurgical structure under high temperature and anticorrosion must be taken into full consideration during the selection of high temperature materials. Generally, the alloy steel shall contain chrome, nickel, molybdenum, etc. In addition, under high temperature and high pressure, the steel will be eroded by hydrogen, which will cause decarburization and embrittlement. After being added into the steel, the elements such as chrome, nickel, molybdenum, etc. can enhance the hydrogen corrosion resistance of steel in combination with the element carbon.

▲ Cryogenic materials

The cryogenic impact value of materials and the problem of embrittlement of materials under low temperature must be taken into full consideration during the selection of cryogenic materials. Therefore, the materials that are used in cryogenic service conditions must have sufficient toughness under low temperature. The valve will be safe and reliable only when the steel used in the valve meets the impact energy stipulated in relevant standards under the applicable temperature. The austenitic stainless steel is often adopted as its cryogenic mechanical property is relatively stable.

▲ Anti-cavitation materials

When the fluid is liquid, especially when the occurrence of flash evaporation and cavitation appears, the issue of anticavitation must be taken into full consideration. The anticavitation materials mainly include:

a) Materials of high hardness (the hardness is enhanced through heat treatment) b) Materials with solid oxide layer and high toughness and fatigue strength (the hardness on the surface of the material is enhanced through surface heat treatment)b) Materials with solid oxide layer and high toughness and fatigue strength (the hardness on the surface of the material is enhanced through surface heat treatment) c) Materials of partial hardening treatment (overlay welding treatment)

▶ Trim materials

The commonly used trim materials include SUS 304, SUS316, SUS316L, SUS410, SUS420, etc. According to different fluids, the corresponding treatment is carried out. When the valve is used for controlling cavitation fluids and fluids containing solid granules or used in high temperature and high pressure applications, hardening treatment must be carried out to prolong the service life of the valve.

The main methods of hardening treatment include:

1 Heat treatment

a. 304/316 solid solution treatment

The series of materials is austenitic stainless steel which is mainly used in service conditions with corrosive media or low temperature applications. Solid solution treatment must be carried out when the media corrosion is relatively strong. The purpose of solid solution treatment is to enhance material hardness and anti-corrosion performance. Working temperature range -196 - 530°C

b. 410/420 thermal refining treatment (quenching + tempering)

The series of materials is martensitic stainless steel which is an excellent anti-cavitation material. It shall be subjected to thermal refining treatment when used in high temperature and high pressure applications. The purpose of thermal refining treatment is to enhance

c. 17-4PH precipitation hardening treatment

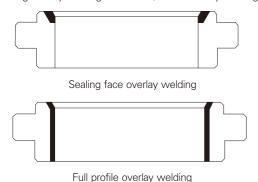
Different types and quantities of reinforcing elements are added on the basis of the chemical components of stainless steel, and different types and quantities of carbides, nitrides, carbonitrides, intermetallic compounds are deposited through precipitation heat treatment. The process that forms high strength stainless steel with the steel strength being enhanced and sufficient toughness being maintained is called precipitation hardening.

Working temperature range -45 - 425°C material hardness and prolong the service life under severe service conditions

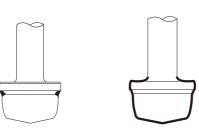
Working temperature range −45 - 425°C

2. Surface hardening treatment

Surface heat treatment includes two types: surface hardening, surface chemical heat treatment. a. surface hardening by flame heating, surface hardening by contact heating, induced surface hardening, etc. b. carburizing, nitriding, carbonitriding, boronizing, chromizing, copperizing, etc.


3. Overlay welding treatment

Stellite overlay welding (main elements Co, Cr, W) is the commonly used hardening treatment and excellent anticorrosive performance can be achieved.


Stellite overlay welding includes two modes such as full overlay welding and partial overlay welding. The selection of the overlay welding modes is not specially stipulated in a standard. The mode shall be selected according to different pressures and temperatures of the fluids and depends on if the fluids contain granules.

The types of overlay welding include:

Plug overlay welding treatment (Stellite overlay welding)

Seat overlay welding types (Stellite overlay welding)

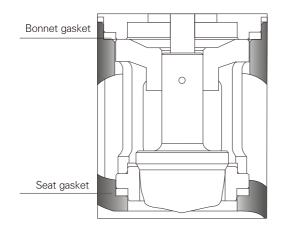
► Trim materials

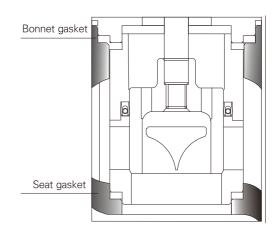
Materials for main parts					
Part name	Material				
Body, bonnet	WCB、WC6、WC9、CF8、CF8M、CF3、CF3M				
Plug, seat	304、316、316L、410、420、17-4PH、Monel, Hastelloy				
Cage	CF8、CF8M				
Stem	304、316、316L、420、17-4PH				

Note: Special materials can be offered according to customer requirements.

As the main pressure parts, the body and bonnet will release the media contained to the air once they fail. Therefore, thematerials used in the bod and bonnet must be able to meet the corresponding mechanical properties under thestipulated medium temperature and pressure.

ANSIWorkin	g temperati	ure and press	sure range of	body materi	alsANSI			U	INIT:MPa G
°C		150#			300#			600#	
Temperature	WCB	Cf8	CF8M	WCB	Cf8	CF8M	WCB	Cf8	CF8M
-196~38		1.90	1.90		4.95	4.95		9.91	9.92
-45~38		1.90	1.90		4.95	4.95		9.91	9.92
-5~38	1.96	1.90	1.90	5.10	4.95	4.95	10.20	9.91	9.92
50	1.92	1.84	1.84	5.00	4.77	4.80	10.01	9.56	9.62
100	1.76	1.61	1.61	4.63	4.08	4.21	9.27	8.17	8.43
150	1.57	1.47	1.47	4.51	3.62	3.85	9.04	7.26	7.69
200	1.40	1.37	1.37	4.38	3.27	3.56	8.75	6.54	7.12
250	1.20	1.20	1.20	4.16	3.04	3.34	8.33	6.10	6.67
300	1.01	1.01	1.01	3.87	2.91	3.15	7.74	5.80	6.32
350	0.84	0.84	0.84	3.69	2.81	3.03	7.38	5.60	6.07
375	0.73	0.73	0.73	3.64	2.77	2.96	7.28	5.54	5.93
400	0.64	0.64	0.64	3.44	2.74	2.91	6.89	5.48	5.81
425	0.55	0.55	0.55	2.88	2.71	2.87	5.74	5.42	5.72
450	0.47	0.47	0.47	1.99	2.68	2.81	4.00	5.37	5.61
475	0.37	0.37	0.37	1.35	2.65	2.73	2.70	5.30	5.46
500	0.28	0.28	0.28	0.88	2.60	2.67	1.75	5.20	5.37
525	0.18	0.18	0.18	0.51	2.19	2.57	1.03	4.77	5.15
538	0.13	0.15	0.15	0.34	2.18	2.53	0.72	4.55	5.06

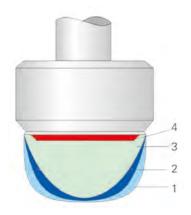

JB/T79-94									UNIT:MPa G
°C	PN1.6	PN4.0	PN6.3	PN10	ဇ	PN1.6	PN4.0	PN6.3	PN10
Temperature	ZG230-450			Temperature		ZGOVr18Ni9			
-5~200	1.60	4.00	6.30	10.00	-45~200	1.60	4.00	6.30	10.00
~250	1.40	3.50	5.40	9.00	~300	1.40	3.50	5.40	9.00
~300	1.20	3.00	4.00	7.50	~400	1.20	3.00	4.00	7.50
~350	1.10	2.60	4.00	6.60	~480	1.10	2.60	4.00	6.60
~400	0.90	2.30	3.70	5.80	~520	0.90	2.30	3.70	5.80
~425	0.80	2.00	3.20	5.00	~560	0.80	2.00	3.20	5.00
~435	0.70	1.80	2.80	4.50					
~445	0.62	1.60	2.50	4.20					
~455	0.57	1.40	2.30	3.60					

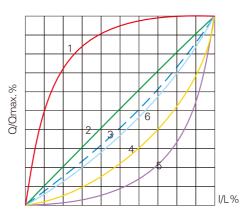


▶ Gasket

The 100 Series is a new generation high performance control valve. It adopts self aligning insertion type threadless seat, which is fixed axially by the bonnet and cage. Metal-to-metal contact between the bonnet and body and between the seat and body is realized. The gap between them is filled by the packing gasket and sealing is realized. The compression degree of the bonnet sealing gasket is determined by the bolt pre-tightening force on the bonnet. Only after the concentricity between the bonnet and body is ensured, will it be ensured that the plug and seat are vertically aligned so as to meet the strict sealing requirement.

When the bonnet is completely installed, its force is transferred to the seat through the cage or sleeve. Only when the height tolerance of seat, cage or sleeve is very close, will the sealing gasket of the seat achieve proper compression, so that sealing is ensured and no leakage is caused due to over pressure on the sealing gasket of the seat. If the valve is correctly assembled, the self aligning seat with the top guided structure will fit well with the plug without the need of grinding.




Various gasket materials and working temperature range

Туре	Material	Temperature range
Flat gasket(for general purpose)	PTFE	−130°C ~ 150°C
Serrated gasket (for high temperature and high pressure)	304/316	−196°C ~ 500°C
Spiral wound gasket (for high temperature and corrosion)	304/316+flexible graphite	–196°C ~ 500°C

The sealing gaskets made of special materials can be used under higher temperature.

► Flow characteristic

Equal percentage characteristic

Linear characteristic

Quick open characteristic

▲ Flow characteristic

The flow characteristic of the control valve is the relationship between the flow of the incompressible fluid that passes through the control valve and the opening of the control valve when the differential pressure at the two ends of the valve is invariable. This flow characteristic is called inherent flow characteristic.

The typical inherent characteristics include linear characteristic and equal percentage characteristic. Actually, when the control valve controls the process media, the differential pressure on the valve will change according to the change of the opening. In this case, the characteristic curve between the opening of the control valve and the flow will deviates from the inherent flow characteristic curve . We call this kind of flow characteristic as actual flow characteristic.

▲ Linear flow characteristic:

It indicates that the flow and opening of the control valve are in the linear relationship. It is usually used for applications with small change of differential pressure, which is almost invariable. When the pressure drop on the valve becomes the main pressure drop in the system, the linear flow characteristic is often used.

▲ Equal percentage flow characteristic:

It indicates the flow change rate caused due to the change of travel is in direct proportion to the original flow at the point. It is usually used in applications that require relatively wide adjusting range, or when the system pressure loss is much higher than that of the valve, or when the opening change and differential pressure change on the valve is relatively high.

▲ Quick open:

It is mainly used for on-off control system. It is required that the flow should be high when the opening is small, and with the increase of the opening, the flow will reach the highest value very soon. After that, if the opening increases again, the change of flow is very little.

▶ Packing structure

Packing

As a seal at the stem, the packing plays the sealing function for the upward and downward movement at the stem. The traditional solution is the pressing board type packing box structure. Although this structure can play the sealing function, the problem that high friction at the stem will cause big dead band, no response and small signal still exists. To solve the above problem, the 100 Series control valve is designed with the new type packing box structure based on the principle of ensuring effective sealing at the stem, improving the structure and reducing stem friction. The structure has such features as: The integral packing box is easy to replace and repair. Many U type seal rings with sealing compensation function replace the traditional PTFE V type packing.

Standard packing box structure

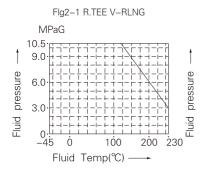
Standard packing
The integral packing box
is the standard packing
structure. It is easy to
replace and repair with
the modular design.
Working temperature:
-30°C - 260°C

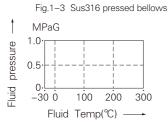
The packing is composed of many U type seal rings with sealing compensation function.

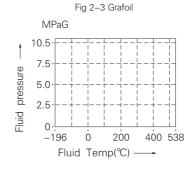
High temperature packing box structure

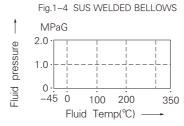
High temperature packing The V type flexible graphite serves as the high temperature packing. Working temperature: −45°C − 530°C The high temperature packing is composed of three V type graphites of different tapers.

▶ Bellows packing box structure

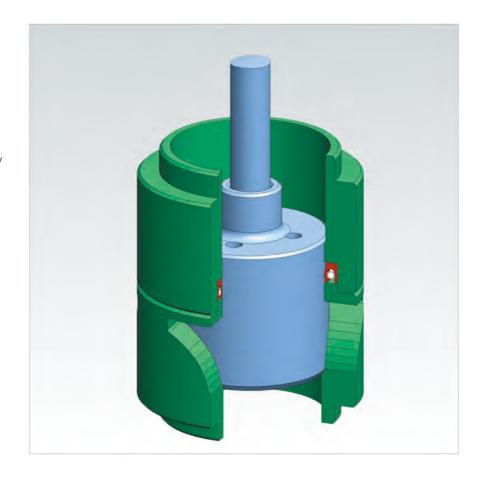



The bellows stem sealing structure often adopts the bellows. The standard packing box with dual sealing will absolutely seal toxic and cryogenic media. Working temperature: −60°C − 530°C

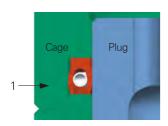

The metal bellows isolates the media from the outside, and ensures the stem makes upward and downward movement.


Working pressure and temperature range of sealing materials

Туре	Material	
Standard	PPL PTFE	-30°C - 260°C -30°C - 230°C
High temperature	V type flexible graphite RTFE	−30°C − 540°C −50°C − 250°C
Bellows seal	304/316 Hastelloy C/MOENEL	−196°C − 400°C −250°C − 530°C

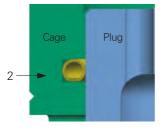


▶ Seal ring solutions in the balanced trim

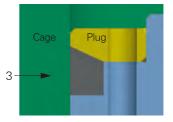

▲ Seal ring solutions in the balanced trim

The balanced seal ring is mainly used in the balanced trim to play the sealing function. It is a core technological part in the sleeve type control valve. The balanced trim type control valve produced by our company provides three kinds of seal rings for users.

▲ Balanced seal ring


Sealing type: pressure self-sealing Shut-off class: ASME B16.104 Class V Temperature range: −30°C − 260°C

▲ Metal C ring


Sealing type: extruding sealing/pressure self-sealing

Shut-off class: ASME B16.104 Class IV Temperature range: $-196^{\circ}\text{C} - 650^{\circ}\text{C}$

▲ Compound graphite seal ring

Sealing type: extruding sealing Shut-off class: ASME B16.104 Class V Temperature range: -196°C - 560°C

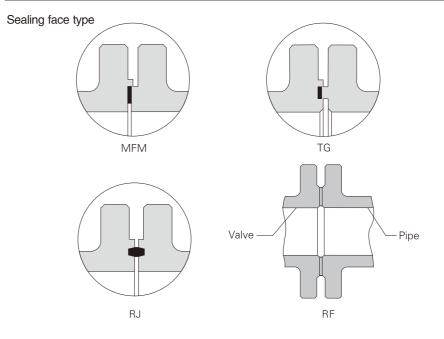
▶ Introduction to the balanced seal ring

▲ Introduction to the balanced seal ring

- The spring actuated PTFE seal is a high performance seal that is assembled with special spring in the U PTFF
- The proper spring force and the fluid pressure in the system will eject the seal lip and slightly press the sealed face so as to achieve excellent sealing effect.
- The seal lip is short and thick, which is the best feature, so as to reduce friction and prolong the service life.

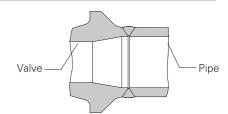
▲ Features of the balanced seal ring

- Used for reciprocating and rotating movements
- Suitable for most fluids and chemical products
- · Low friction coefficient
- Without the occurrence of crawling during precision control, the dead band of the valve is reduced.
- Good anti-wear performance and size stability
- Adapting to sharp temperature change
- No pollution

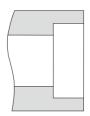

Selection of sealing materials							
Tem	perature e	-196℃ ▽	-30°C	260℃	450℃	560℃	
Number	Seal ring t	уре	•	Material	·		
1	Balanced sea	I ring	PI	PL			
2	Graphite seal	ring	Flexible	graphite .			
3	Metal seal r	ring		INCONEL 718			

▶ Connection type

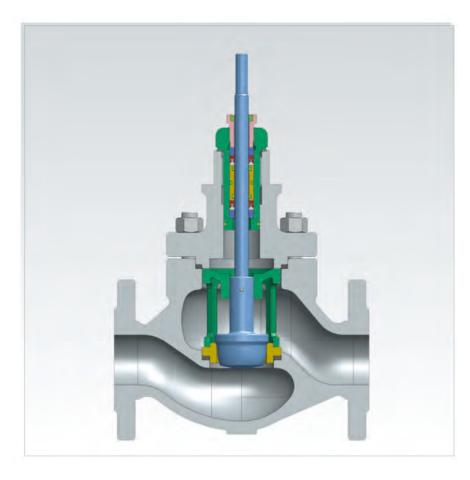
The end connection types of the control valves produced by our company mainly include flange connection and butt welding connection, and socket welding connection and thread connection are also available for valves of small sizes. Designs can also be made according to customer requirements.


Flange connection end

Note: When used on valves with PN≥4.0MPa, the integral flanges generally have female face, and the pipe flanges generally have raised face.


Butt welding connection end

Unless otherwise specified by customers, the butt welding end of the control valves produced by our company is machined according to the slope size stipulated in GB/T12224, ASME B16.25.



Socket welding connection end

Unless otherwise specified by customers, the socked welding end of the control valves produced by our company is machined according to the size stipulated in JB/T1751, ASME B16.11.

▶ 10P Series control valve

▲ Outline

The 10P Series single-seat control valve adopts the top guided unbalanced structure, featured by high strength, heavy load, S type flow channel, low pressure drop loss, high flow coefficient, wide adjustable range, high flow characteristic precision, etc. This kind of control valve is suitable for applications with relatively low differential pressure with tight shut-off. It is suitable for controlling medium flow or pressure. The cage adopts the press-in type seat design, which solves the problems of difficult disassembly and high leakage of the traditional thread screw-in type seat and prolongs the service life. The flow to open design is adopted, and the medium flow direction tends to the opening direction of the valve with good controllability of small opening and low flow characteristic distortion. Special cages with noise reduction and anticavitation functions can be offered according to the requirements in different service conditions.

Parameters of control valves:

Trim features: Top guided, unbalanced trim,

quick disassembly cage structure

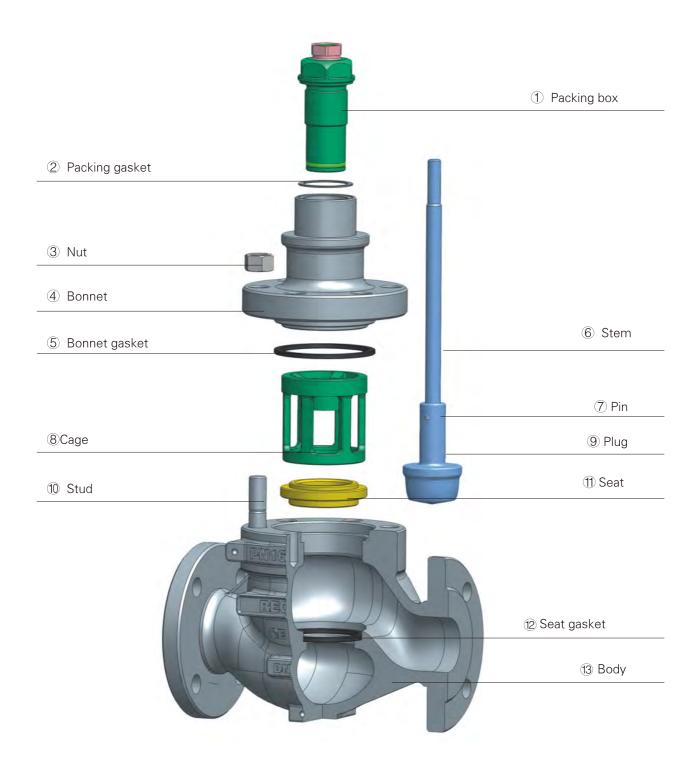
Body type: straight-through type, angle type.

Bonnet type: standard type, heat dissipation type, cryogenic type, bellows

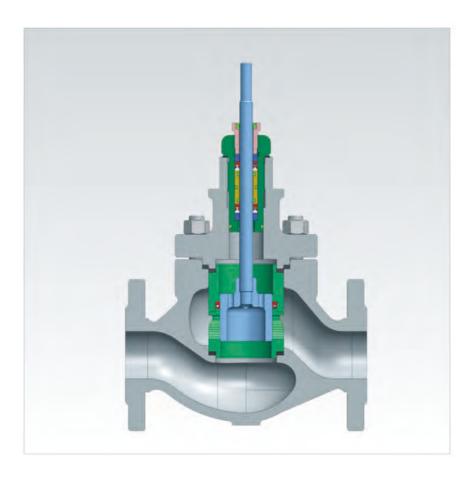
Flow characteristic: equal percentage, linear, quick open
Shut-off class: ASME B16.104 IV (standard metal seat)

ASME B16.104 VI (shut-off soft seat)

Pipe connection type: flange type, butt welding type Applicable temperature range: $-196^{\circ}\text{C} - 570^{\circ}\text{C}$ Actuator type: pneumatic diaphragm actuator


pneumatic piston actuator

Electric actuator



► Exploded view of 10P Series

▶ 10T Series control valve

▲ Outline

The 10T Series cage single-seat control valve adopts the cage guided structure and pressure balanced plug. It is suitable for applications with relatively high differential pressure. The balanced seal ring replaces the upper seat to change the traditional cage double-seat valve structure into the cage single-seat structure. This improvement has greatly enhanced the shut-off class of the cage valve. The plug makes use of the pressure balanced structure, the opening and closing force is low and the media under service conditions with high differential pressure can be controlled through relatively low actuator thrust. It is widely used for fluid control on pipelines of middle and low temperature and middle and low pressure that require good dynamic stability. With such features as good sealing performance, high allowable differential pressure, cage guiding, large guiding area, good stability and compact structure, it can realize fast replacement of trims on the line with high maintenance efficiency, saving manpower and time. The balanced plug structure makes sure that the actuator thrust required is the lowest.

▲ Parameters of control valves:

Trim features: cage guided type, balanced trim structure,

with balanced seal ring structure

Body type: straight-through type, angle type.

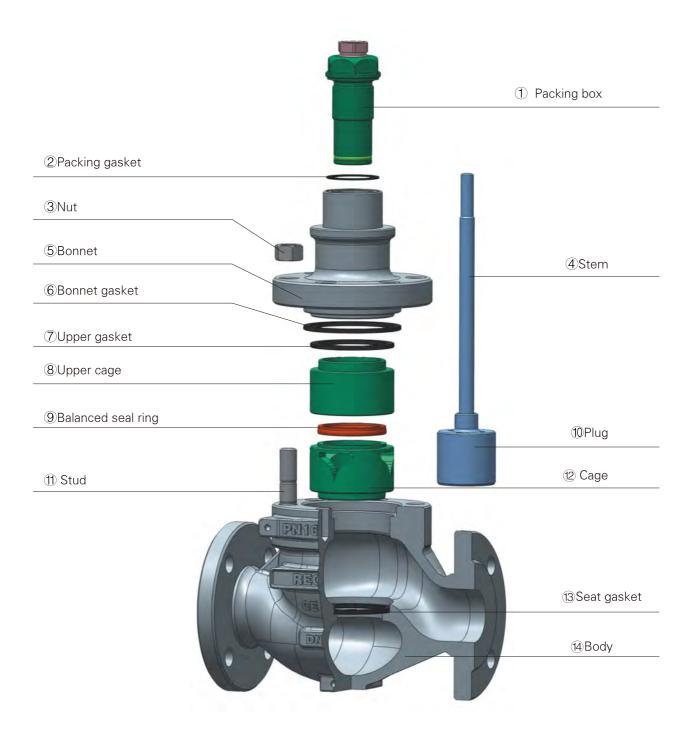
Bonnet type: standard type, heat dissipation type, cryogenic type, bellows

Flow characteristic: equal percentage, linear, quick open Shut-off class: ASME B16.104 IV (standard metal seat)

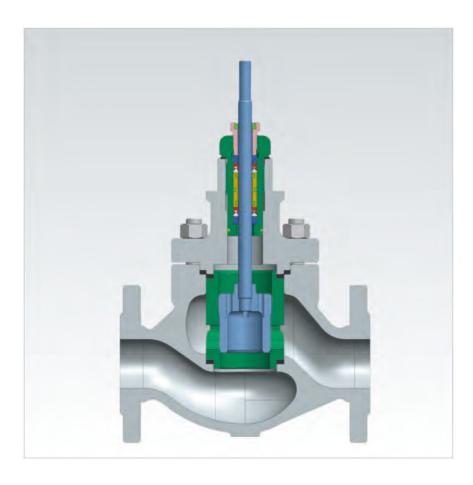
ASME B16.104 VI (shut-off soft seat)

Pipe connection type: flange type, butt welding type Applicable temperature range: $-30^{\circ}\text{C} - 260^{\circ}\text{C}$

Actuator type: pneumatic diaphragm actuator


pneumatic piston actuator

Electric actuator



► Exploded view of 10TSeries

▶ 10G Series control valve

▲ Outline

The 10G Series cage double-seat control valve adopts the cageguided structure and pressure balanced plug. Different from the 10T Series, this kind of control valve adopts the cagedouble-seat structure and is mainly used in applications that do not have high requirements for shut-off class. As it adopts the double-seat structure, and the two sealing faces are metal seals, the temperature range is wider. The plug makes use of the pressure balanced structure, the opening and closing force is low and the media under service conditions with high differential pressure can be controlled through relatively low actuator thrust. It is widely used for fluid control on pipelines of middle and low temperature and middle and low pressure that require good dynamic stability. With such features as good sealing performance, high allowable differential pressure, cage guiding, large guiding area, good stability and compact structure, it can realize fast replacement of trims on the line with high maintenance efficiency, saving manpower and time. The balanced plug structure makes sure that the actuator thrust required is the lowest.

Parameters of control valves:

Trim features: cage guided type, balanced trim structure,

with balanced seal ring structure

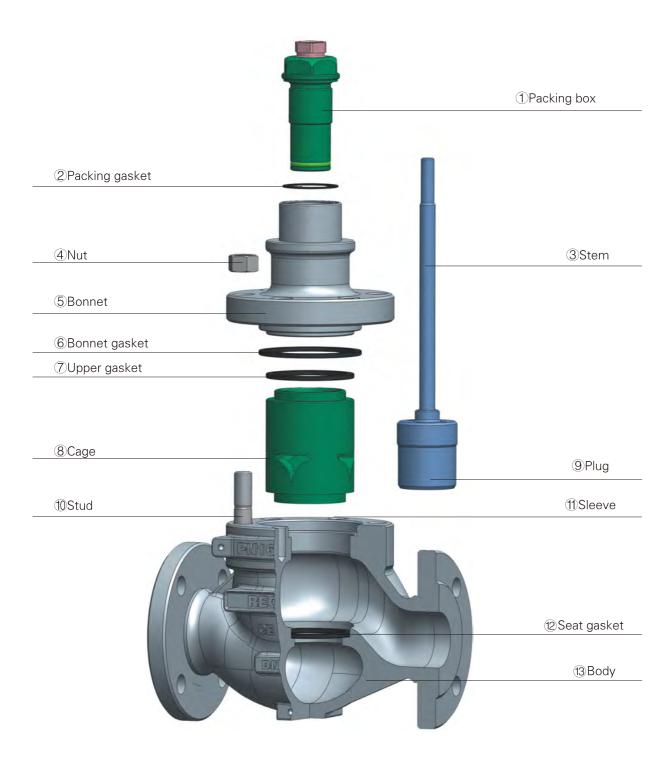
Body type: straight-through type, angle type.

Bonnet type: standard type, heat dissipation type, cryogenic type, bellows

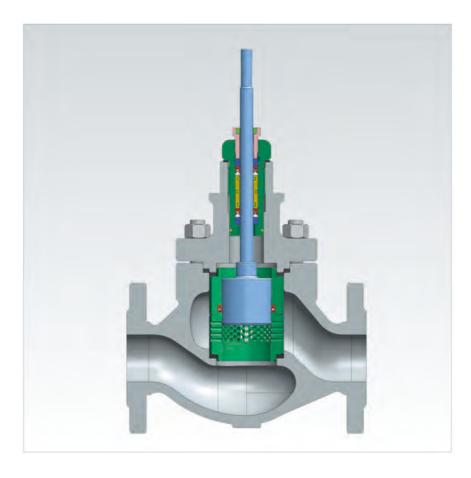
Flow characteristic: equal percentage, linear, quick open
Shut-off class: ASME B16.104 IV (standard metal seat)

Electric actuator

ASME B16.104 VI (shut-off soft seat)


Pipe connection type: flange type, butt welding type Applicable temperature range: $-196^{\circ}\text{C} - 570^{\circ}\text{C}$ Actuator type: pneumatic diaphragm actuator

pneumatic piston actuator



► Exploded view of 10G Series

▶ 10D Series control valve

▲ Outline

The 10D Series multi-hole low noise control valve adopts the sleeve guided structure and pressure balanced plug. It is a high performance control valve with good dynamic stability that is suitable for severe service conditions. As the differential pressure in the service conditions is relatively high and the flow velocity of media is high, the trims will be severely eroded and damaged and high noise will be produced. Therefore, we change the standard window-type sleeve into the multi-hole sleeve. For liquids, the flow direction is generally high-in and low-out, and multi-hole throttling makes the media carry out collision inside the sleeve, so as to consume internal energy and reduce flow velocity. For gas media, the flow direction is generally low-in and high-out, so that the gas media achieve volume expansion at the back of the seat after throttling by the multi-hole sleeve and the pressure of media is reduced to lower the flow velocity. The parts of the 101D Series are interchangeable with those of the 101T Series control valve except that the sleeve is changed into the multi-hole type.

Parameters of control valves:

Trim features: sleeve guided type, balanced trim structure,

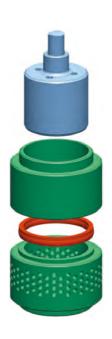
with balanced seal ring structure

Body type: straight-through type, angle type.

Bonnet type: standard type, heat dissipation type, cryogenic type, bellows

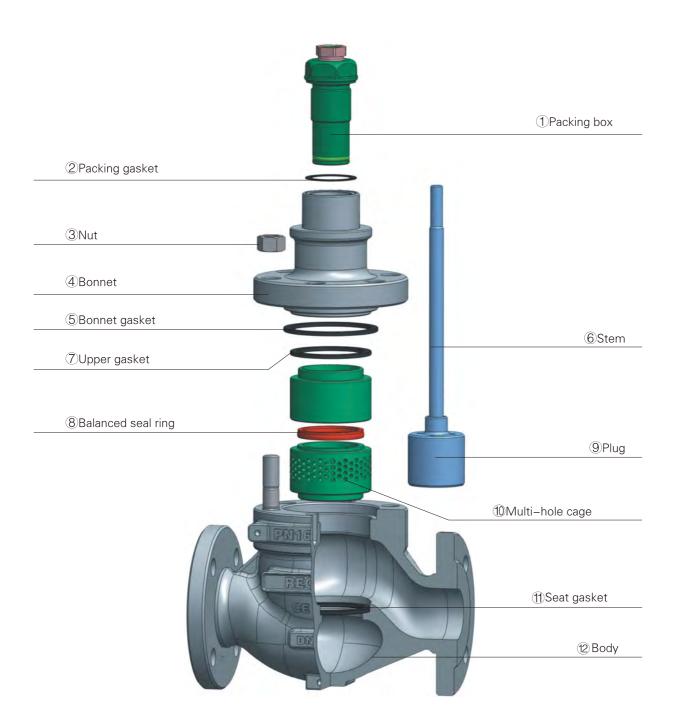
Flow characteristic: equal percentage, linear, quick open Shut-off class: ASME B16.104 IV (standard metal seat)

ASME B16.104 VI (shut-off soft seat)


Pipe connection type: flange type, butt welding type Applicable temperature range: $-30^{\circ}\text{C} - 260^{\circ}\text{C}$ (single-seat structure)

-196°C - 570°C (double-seat structure)

Actuator type: pneumatic diaphragm actuator


pneumatic piston actuator

Electric actuator

► Exploded view of 10D Series

▶ 10S Series control valve

▲ Outline

The 10S Series multi-stage pressure drop control valve adopts the sleeve guided structure and pressure balanced plug. It is mainly used in service conditions with high differential pressure and applications that produce flash evaporation and cavitation. According to different parameters, it is designed with different pressure drop cages that form a multi-stage pressure drop trim. The cages designed according to different service conditions ensure the occurrence of flash evaporation and cavitation in the valve is eliminated. Throttling is carried out from the time when the media contact the first cage, and the high differential pressure at the inlet is gradually reduced after several times of throttling. Thus it is effectively ensured that the pressure is always above the saturated vapor pressure when the media flow in the valve, and the occurrence of flash evaporation and cavitation is eliminated, so that the service life of the control valve is prolonged under severe service conditions.

▲ Parameters of control valves:

Body type:

Trim features: sleeve guided type, balanced trim structure,

with balanced seal ring structure straight—through type, angle type

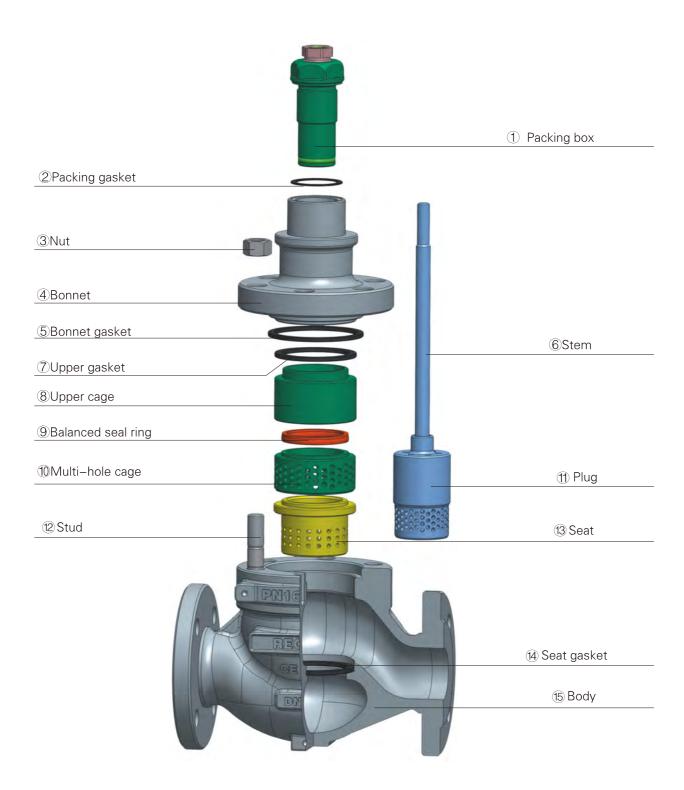
Bonnet type: standard type, heat dissipation type, cryogenic type, bellows

Flow characteristic: equal percentage, linear, quick open
Shut-off class: ASME B16.104 IV (standard metal seat)
ASME B16.104 VI (shut-off soft seat)

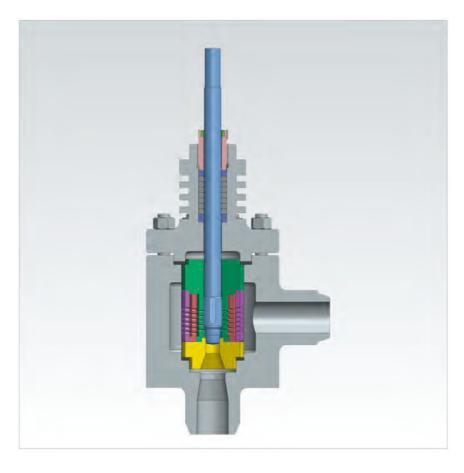
Pipe connection type: flange type, butt welding type

Applicable temperature range: -30°C - 260°C (single-seat structure)

-196°C - 570°C (double-seat structure)


Actuator type: pneumatic diaphragm actuator pneumatic piston actuator

Electric actuator



► Exploded view of 10S Series

▶ 10S Series control valve (unbalanced trim)

▲ Outline

The 10S Series unbalanced multi-stage pressure drop control valve is suitable for applications with high differential pressure and applications that produce flash evaporation and cavitation. According to the requirements in different service conditions, it is designed with various multi-hole cages that form a multi-stage pressure drop trim, so that the internal energy of high speed media is consumed and flow velocity is reduced from the time when the fluids contact the first cage. As it is composed of various cages, the pressure is gradually reduced so that the medium pressure is always above the saturated vapor pressure, and the occurrence of flash evaporation and cavitation is eliminated. The standard configuration is the unbalanced singleseat plug and the plug and seat are subjected to hardening treatment to prolong the service life of the trim. The valves of large sizes can be designed with the balanced single-seat plug structure.

▲ Parameters of control valves:

Trim features: sleeve guided unbalanced trim structure,

combination of multi-hole cages

Body type: straight-through type, angle type,

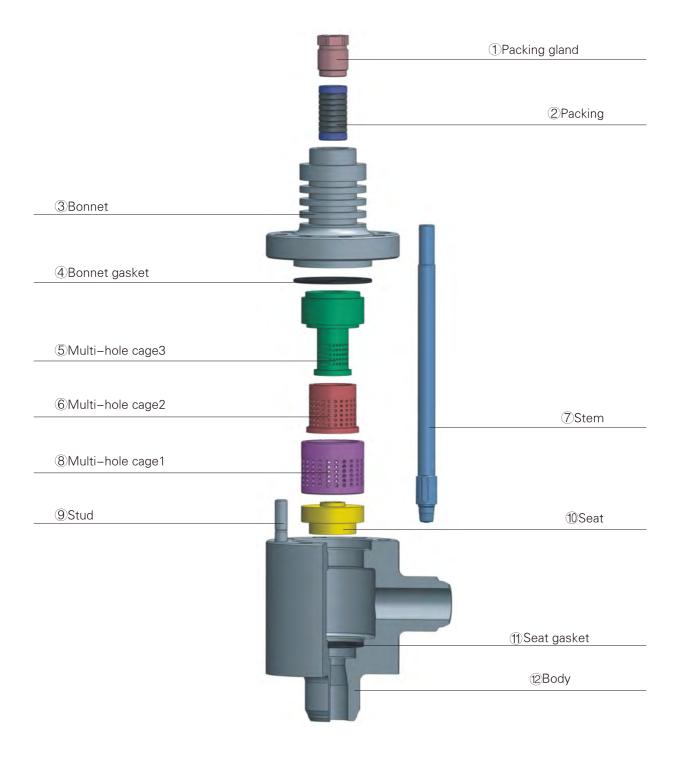
Bonnet type: standard type, heat dissipation type, cryogenic type, bellows

Flow characteristic: equal percentage, linear, quick open

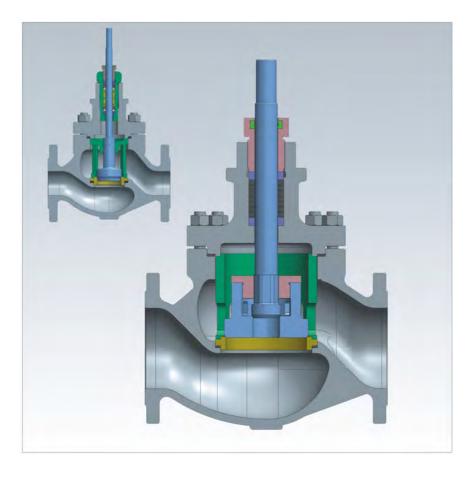
Shut-off class: ASME B16.104 IV (standard metal seat)

ASME B16.104 VI (shut-off soft seat)

Pipe connection type: flange type, butt welding type Applicable temperature range: -196°C - 570°C Actuator type: pneumatic diaphragm actuator


pneumatic diaphragm actuator pneumatic piston actuator

Electric actuator



► Exploded view of 10S Series (unbalanced trim)

▶ 10Q Series control valve

▲ Outline

The 10Q Series unbalanced shut-off valve adopts top guided pressure unbalanced plug. It is suitable for applications with low differential pressure. The plug and seat surfaces are subjected to hard alloy overlay welding to ensure long-time stable running of the valve. For shut-off applications of media of high temperature and service conditions with high differential pressure, we have specially designed the double-plug pressure relief type shut-off valve. The trim of this kind of valve adopts double-plug structure with flow to off design. When opening the valve, first open the small plug, and the starting force is relatively low because the area of thrust surface of the small plug is small. After the small plug is opened, the pressure after the valve is released and the differential pressure acting on the large plug is greatly reduced. The large plug can be opened with a relatively low actuator force. The trim of this kind of structure can meet the need for shut-off applications in service conditions with high differential pressure.

▲ Parameters of control valves:

Trim features: sleeve guided type, balanced trim structure,

with balanced seal ring structure straight—through type, angle type.

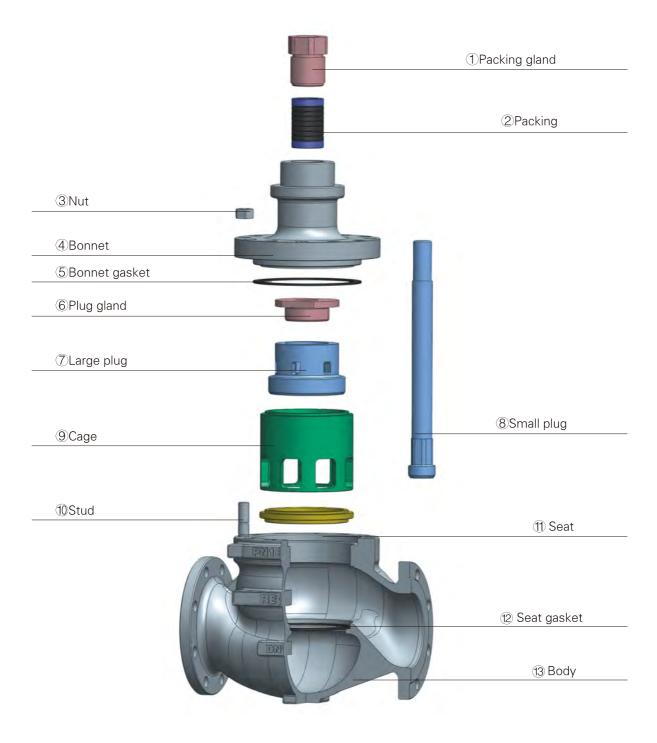
Body type: straight—through type, angle ty Bonnet type: cryogenic type, bellows

Flow characteristic: Fast opening characteristic
Shut-off class: ASME B16.104 VI (standard metal seat)

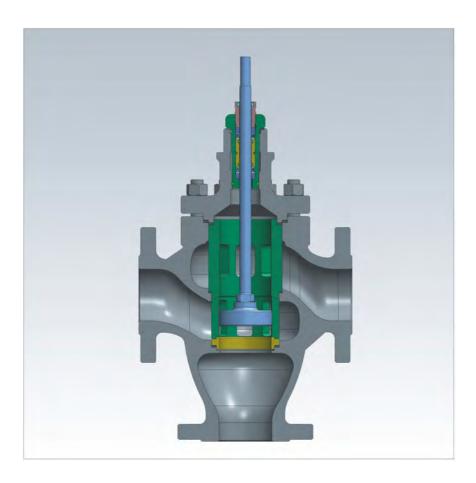
Pipe connection type: flange type, butt welding type

Applicable temperature range: −196°C − 570°C

Actuator type: pneumatic diaphragm actuator


pneumatic piston actuator

Electric actuator



► Exploded view of 10Q Series

▶ 13H/F Series control valve

▲ Outline

The 13H/F Series three-way converging/diverging control valve adopts the top guided pressure unbalanced plug. It is mainly used for converging or diverging media of several flow channels. Entering from two channels and exiting from one channel is called three-way converging, and conversely, entering from one channel and exiting from two channels is called diverging. The three-way valve can also play the pipe shut-off and opening function. The standard converging/diverging design is the unbalanced doubleseat trim structure. In addition, special cages with noise reduction and anti-cavitation functions can also be designed according to the service conditions.

▲ Parameters of control valves:

Trim features: Double-seat sleeve guided

Body type: three-way type

Bonnet type: standard type, heat dissipation type,

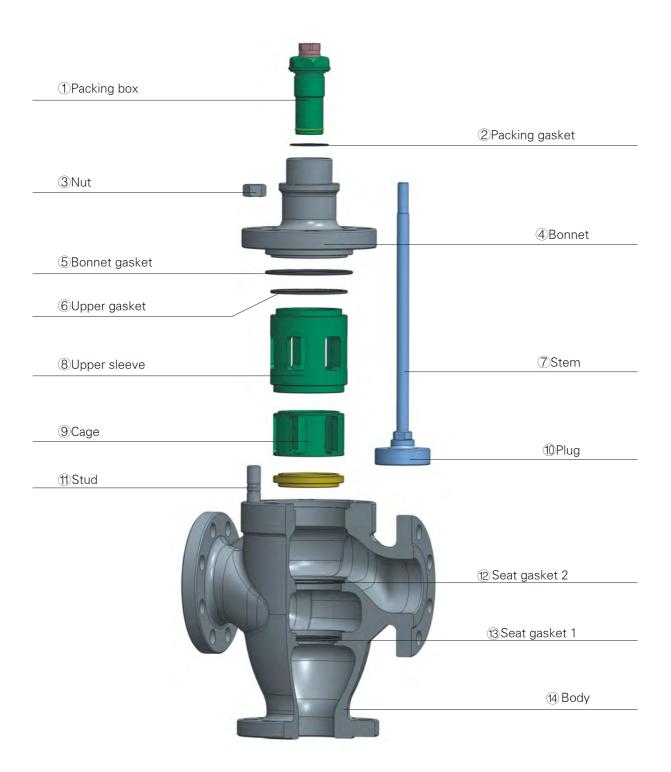
cryogenic type, bellows

Flow characteristic: equal percentage, linear, quick open
Shut-off class: ASME B16.104 IV (standard metal seat)

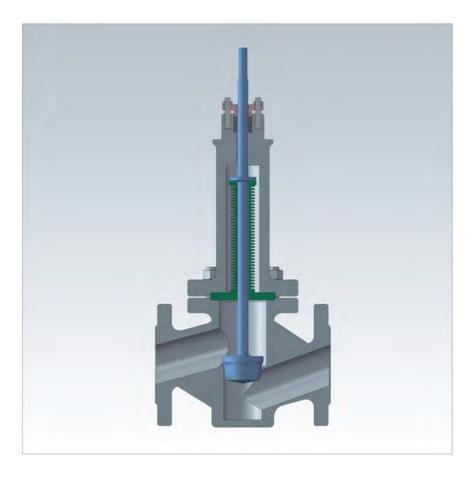
Pipe connection type: flange type, butt welding type

Applicable temperature range: −196°C - 560°C

Actuator type: pneumatic diaphragm actuator


pneumatic piston actuator

Electric actuator



► Exploded view of 13H/F Series

▶ 10PF Series control valve

▲ Outline

The 10PF Series linear motion single-seat lined control valve adopts full fluorine lined body and trim structure to effectively prevent the corrosion of metal materials in the valve by corrosive media. The metal body cavity is subjected to serrated machining treatment so as to make the lining materials fully fit into the metal and prolong the service life and performance of lining materials. The stem seal is the compound seal of F46 bellows seal and V PTFE packing, which can eliminate the possibility of media leaking from the stem to the outside. The unbalanced full lined control valve is especially suitable for very corrosive media under low pressure and normal temperature service conditions.

▲ Parameters of control valves:

Trim features: unbalanced plug, lined seat, bellows stem seal

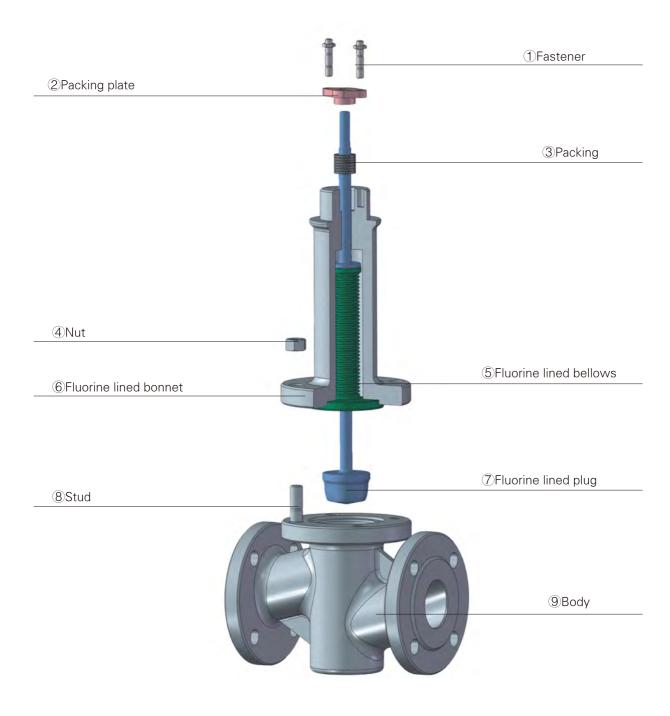
Body type: straight-through type
Bonnet type: standard type, bellows type

Flow characteristic: equal percentage, linear, quick open

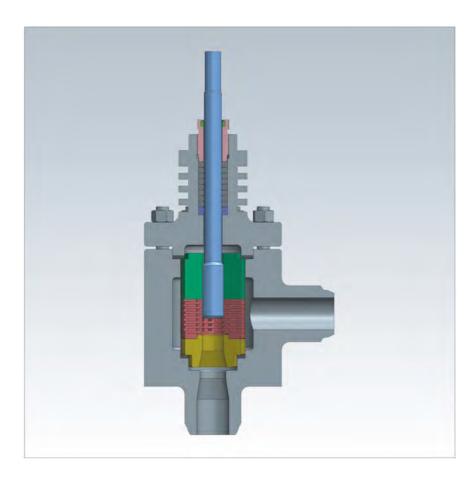
Shut-off class: ASME B16.104 V
Pipe connection type: flange type

Applicable temperature range: -45°C – 150°C

Actuator type: pneumatic diaphragm actuator


pneumatic piston actuator

Electric actuator



► Exploded view of 10PF Series

► 10M Series control valve (unbalanced trim)

▲ Outline

The 10M Series unbalanced labyrinth control valve adopts the labyrinth cage and unbalanced trim design. The labyrinth sleeve is composed of cylindrical discs with many coaxially distributed labyrinths. According to different technological parameters of the media, different labyrinth specifications and piling layers are designed to form the cage and the cage divides the whole flow channel into several tiny circuitous or step flow channels, forcing the fluids to continuously change the flow direction and flowing area and gradually reducing the pressure of fluids, so as to prevent the occurrence of flash evaporation and cavitation and prolong the service life of the trim. The unbalanced singleseat is adopted. The trim is suitable for service conditions under which blocked flow will easily be produced and cavitation will be caused. The unbalanced trim is suitable for applications of small sizes and high temperature.

▲ Parameters of control valves:

Trim features: sleeve guided unbalanced trim structure,

labyrinth disc cage combination

Body type: straight-through type, angle type, o

Bonnet type: standard type, heat dissipation type, cryogenic type,

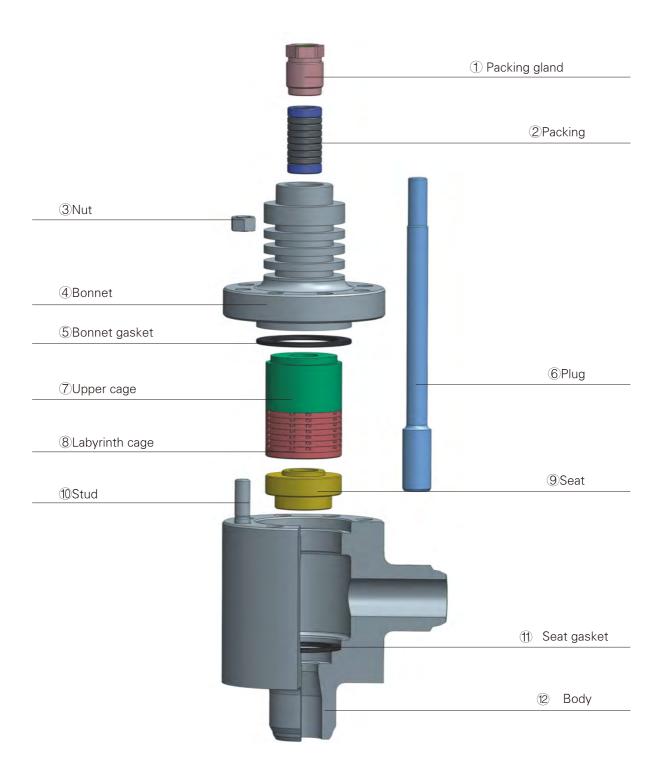
Flow characteristic: equal percentage, linear, quick open Shut-off class: ASME B16.104 IV (standard metal seat)

ASME B16.104 VI (shut-off soft seat) flange type, butt welding type

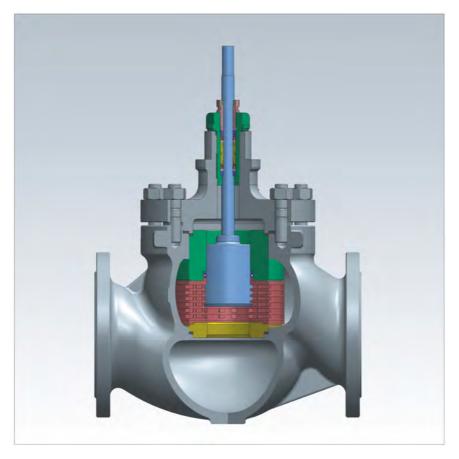
Applicable temperature range: -196°C - 570°C

Pipe connection type:

Actuator type: pneumatic diaphragm actuator


pneumatic piston actuator

Electric actuator



► Exploded view of 10M Series (unbalanced trim)

▶ 10M Series control valve

▲ Outline

The 10M Series balanced labyrinth control valve adopts the labyrinth cage and balanced plug design. The labyrinth sleeve is composed of cylindrical discs with many coaxially distributed labyrinths. According to different technological parameters of the media, different labyrinth specifications and piling layers are designed to form the cage and the cage divides the whole flow channel into several tiny circuitous or step flow channels, forcing the fluids to continuously change the flow direction and flowing area and gradually reducing the pressure of fluids, so as to prevent the occurrence of flash evaporation and cavitation and prolong the service life of the trim. The balanced sleeve plug is adopted. The closely fit plug and seat ensure very low leakage. The trim is suitable for service conditions under which blocked flow will easily be produced and cavitation will be caused.

▲ Parameters of control valves:

Trim features: sleeve guided type, balanced trim structure

Body type: straight-through type, angle type $_{\circ}$

Bonnet type: standard type, heat dissipation type, cryogenic type,

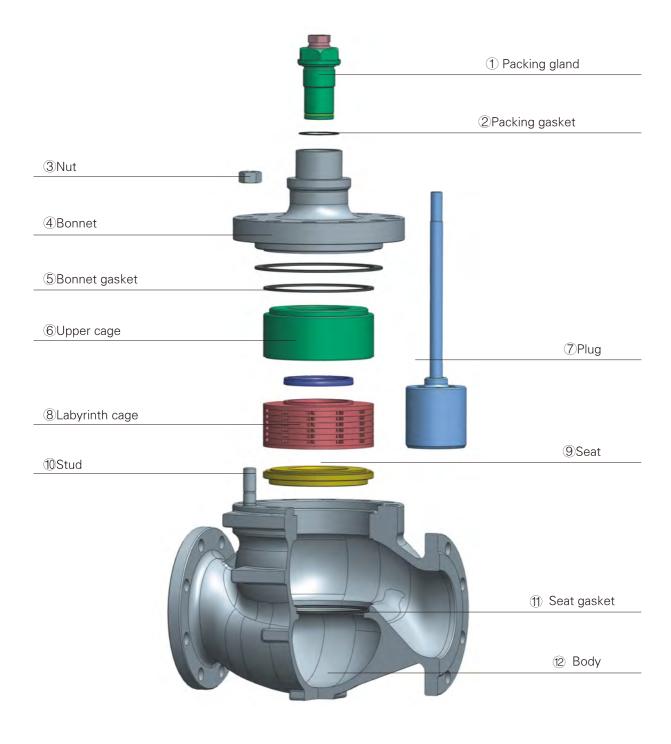
Flow characteristic: equal percentage, Linear, quick open
Shut-off class: ASME B16.104 IV (standard metal seat)
ASME B16.104 VI (shut-off soft seat)

Pipe connection type: flange type, Butt welding type

Applicable temperature range: -30°C - 260°C (single-seat structure)

-196°C - 570°C(double-seat structure)

Actuator type: pneumatic diaphragm actuator


pneumatic piston actuator

Electric actuator

► Exploded view of 10M Series

▶ Control principle of labyrinth control valve

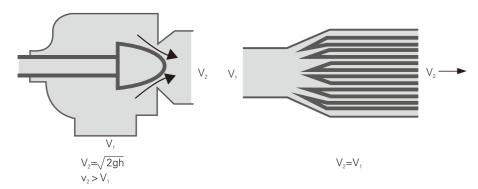
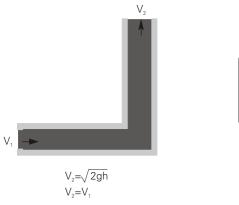



Figure 1: single-stage pressure drop

Figure 2: multiple flow channels pressure drop

 V_1 N Turns $V_2 = \sqrt{2gh/N}$ $V_2 = V_1$

Figure 4: labyrinth multi-stage pressure drop

The labyrinth flow channel can realize control of flow velocity

The labyrinth control valve can prevent the plug from producing high flow velocity and ensure the final control effect: The medium pressure and flow velocity can be effectively controlled during the whole travel of the valve. The labyrinth cage scatters the fluids into several split flow to reduce the flow velocity as much as possible (figure 2). Each fluid channel is composed of specific quantities of right—angled bends that form the labyrinth flow channels (figure 3). During the process, each bend will reduce the flow velocity of the flowing media to a certain extent.

The bend number N is the number that is required for scattering the maximum differential pressure in the plug (figure 4). See the following formulas:

A new formula is obtained.

$$V2(10M)^{\oplus} = \sqrt{2gh/N}$$

Speed control principle of labyrinth control valve

The valve that is damaged by cavitation, flash evaporation, vibration and noise produced by the media that passes through the valve at a high flow velocity is the main cause that leads to failure of control in the system.

Even if the valve is not damaged, bad process control caused by too high noise and severe vibration will lower product performance and influence the running capacity of the equipment.

Based on the principle of fluid mechanics, the labyrinth control valve adopts speed control principle and technology and makes use of multi-stage pressure drop to eliminate cavitation, flash evaporation, vibration, noise, etc., providing overall system control solutions for many different application fields.

Under severe service conditions, bad performance of valves is caused by too high flow velocity. The maximum flow velocity of the fluids in the valve always occurs at the throttling face (figure 1) which is at the downstream side of the restriction orifice of the plug. Even if materials of relatively high hardness are used in the valve to control the damage caused by cavitation, only a small amount of faults in the valve caused by too high flow velocity of the media can be eliminated. The flow velocity of media in all valves must be controlled so as to maintain the performance and reliability of the valves.

Cavitation cause and solution

▲ Cause of cavitation

When the fluid pressure is reduced to the saturated vapor pressure or lower, flash evaporation or bubbles will occur. In most control valves (figure 5), the inlet pressure is P1, velocity is V1. When the fluid passes through the plug necking area, the velocity is increased to Vvc. According to the principle of conservation of energy, the fluid pressure suddenly drops to Pvc. When Pvc is equal to or less than the liquid saturated vapor pressure Pv, the liquid will be gasified and bubbles will be produced, so that flash evaporation occurs.

After the fluid passes through the plug, the pressure starts to be restored and the kinetic energy is transferred into potential energy again. When the pressure is restored to the downstream pressure, which is expressed as P2 and the velocity is V2. When the restored pressure exceeds the saturated vapor pressure Pv, the bubbles formed will be broken and cavitation will occur. This kind of energy release will increase the partial stress to be above 200000PSI (1400MPa) and the stress will rapidly destroy the solid plug.

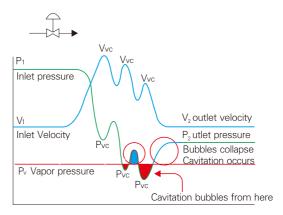


Figure 5: Cause of Cavitation

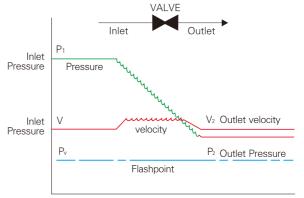
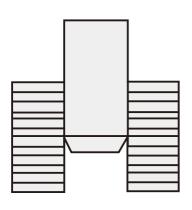


Figure 6: cavitation effectively solved by the labyrinth cage

▲ Solution to cavitation

The labyrinth control valve can effectively eliminate the damage caused by failure of control of fluid velocity.


First, the fluids are scattered into many small flow channels. Thus, even the bubbles are formed, their volume is very small and the energy is not sufficient to produce stress that can damage materials. Secondly, the flow velocity is maintained at the lowest level. Thus, the partial pressure will not be reduced to be lower than the fluid vaporizing pressure. Therefore, cavitation will not occur.

The damage caused by cavitation is a typical signal that indicates failure of control of flow velocity. As is mentioned above, the adoption of materials of high hardness, insulating sleeve or downward orifice will only eliminate a small amount of faults in the valve caused by cavitation. The high flow velocity will cause cavitation and damage the plug, and the solution to cavitation is to adopt the labyrinth cage as shown in figure 6.

According to the fluid evaporation pressure, the flow velocity can be achieved through the following formulas:

$$V=\sqrt{4637(P_2-P_v)/P}$$
 or $V=\sqrt{1000(P_2-P_v)/P}$
Metric English

▶ Design of labyrinth disc

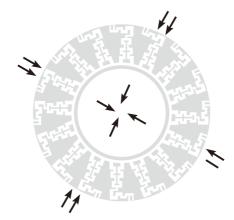


Figure 7: multi-layer labyrinth group

Figure 8: labyrinth disc

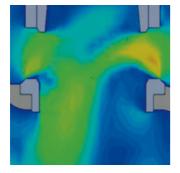
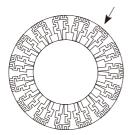
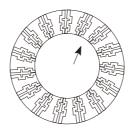




Figure 9: CFD fluid analysis

Selection of flow direction of labyrinth control valve

For liquid media, the flow direction is side—in and bottom—out. For gas and steam media, the flow direction is bottom—in and side—out. This is because that the liquid is an incompressible fluid. By adopting side—in and bottom—out, the high speed liquids at the exits of all flow channels of labyrinth discs will carry out mutual collision on the central axis of the labyrinth sleeve, counteract their energy and form buffer cushion, so as to further lower flow velocity and reduce the erosion of the valve and trim by high speed liquids. The high differential pressure gas and steam are compressible fluids. After pressure drop by the labyrinth discs, the volume expands sharply. This requires that the flow cross—sectional area at the exit should be higher than that at the inlet. Therefore, the flow direction shall be bottom—in and side—out. Otherwise, the pressure drop effect will be influenced.

(B) Gas and steam flow direction: bottom-in and side-out

Design of labyrinth disc of labyrinth control valve

Determine the bend number N and select the number to ensure the flow velocity when the fluid flows out of the flow passage. Each cage forms multi-layer labyrinth groups (figure 7) by adopting special technology. The labyrinth discs are processed into several flow channels similar to the labyrinth through special forming technology (figure 8). According to different service conditions, after precise calculation and in combination with CFD flow filed analysis (figure 9), each flow channel is designed with a series of right-angled bends of specific quantity to provide resistance for media and reduce the velocity stably. The technology can fully control the velocity of media in all channels of labyrinth discs, so that the media can flow at the controllable velocity within the whole range. To achieve the flow characteristic required by the system, a labyrinth group shall be composed of 3 kinds of labyrinth discs. To meet the requirements of high differential pressure and small flow, the discs at the bottom shall have few flow channels and many bends. The middle labyrinth discs shall have medium flow channels. To meet the requirements of low differential pressure and large flow, the discs at the top shall have many flow channels and few bends. The resistance, quantity and area of all flow channels in the labyrinth control valve can be customized according to the specific applications so as to control flow velocity, eliminate cavitation, flash evaporation, vibration, noise and etc. that occur during the use of fluids.

▶ 100 series rated CV and stroke

Table 1 Rated CV value and travel of control valve

Valve size mm	Valve size		ted ¬	Stroke mm	Valve size mm	Valve size		ted - CV	Stroke mm
		EQ%	Linear				EQ%	Linear	
	6	0.28		16	50	50	46	55	25
	7	0.52		16	C.F.	C.F.	75	O.F.	40
	8	0.96		16	65	65	75	85	40
20	9	1.6		16	80	80	110	135	40
	10	2.5		16	100	100	185	210	40
	15	4		16					
	20	8	10	16	125	125	280	310	60
	6	0.28		16	150	150	365	425	60
	7	0.52		16	000	000	050	700	00
	8	0.96		16	200	200	650	700	60
25	9	1.6		16	250	250	960	1050	100
20	10	2.5		16	300	300	1300	1500	100
	15	4		16	300	300	1300	1300	100
	20	8	10	16	350	350	1600	1900	130
	25	13	16	16	400	400	1800	2000	130
32	32	20	25	16					
40	40	30	35	25	450	450	2250	2450	130

Table 2 Rated CV value and travel of three-way valve

Valve size mm	Valve size		ted - CV	Stroke mm	Valve size mm	Valve size		ted - CV	Stroke mm
		EQ%	Linear				EQ%	Linear	
1(25)	5/8(16)	6.3	8	16	8(200)	6(150)	410	435	60
1(23)	3/4(20)	10	13	16	0(200)	7(175)	500	550	60
1.5(40)	1(25)	17	20	25	10(250)	7(175)	500	550	100
1.5(40)	1.25(32)	25	30	25	10(250)	8(200)	650	735	100
2(50)	1.25(32)	25	30	25	12(300)	8(200)	650	735	100
2(30)	1.5(40)	36	40	25	12(300)	10(250)	950	1050	100
3(80)	2(50)	60	70	40	14(350)	10(250)	950	1050	100
3(00)	2.5(65)	100	115	40	14(350)	12(300)	1300	1400	100
4(100)	2.5(65)	100	115	40	16(400)	12(300)	1300	1400	100
4(100)	3(80)	135	150	40	10(400)	14(350)	1600	1900	130
6(150)	4(100)	190	215	60	18(450)	14(350)	1600	1900	130
0(150)	5(125)	280	315	60	10(400)	16(400)	1800	2000	150

► Maximum allowable pressure differential—10P series control valve

Action	Actuator	supply		pring ange					– Plug :	size (se	at diam	eter) m	m —				
type	Size	Kpa G		pa G	20	25	32	4	10	50	65	80	100	1:	25	150	200
	L102	320		-240	5.87	3.45	1.85										
	L102	140		-100	0.51	0.35	0.23		70	4 4 4							
Air	L103	320 140		-240 -100	6.08 0.97	3.68 0.7	2.46 0.45			1.11 0.19							
to		320		-100 -240	9.34	6.77	4.54			2.06	1.37	0.98	0.57	7			
open	L104	140		-100	2.04	1.46	0.97			0.42	0.27	0.19	0.1				
	L105	320		-240		9.91	7.2			3.63	2.43	1.74	1.0		66	0.46	0.2
	L105	140		-100		2.71	1.81		29	0.81	0.53	0.37	0.2	1 0.	13	0.09	0.0
	L102	320		-240	6.45	3.8	2.03										
		140 320		-100 -240	0.56 6.71	0.38 4.04	0.25 2.7		93	1.21							
Air	L103	140		-100	1.07	0.77	0.49			0.21							
to close	L104	320	80	-240	10.27	7.45	4.85		58	2.26	1.51	1.08	0.63	3			
31030	L104	140		-100	2.24	1.61	1.06			0.46	0.29	0.21	0.1				
		320	20	-240		10.9	7.9	6.	29	3.85	2.67	1.91	1.1	0.	.71	0.5	0.2
	L105	140		-100		2.91	1.9			0.85	0.55	0.39	0.23		15	0.1	
he actua	L105 ator is 36	140	20	-100						0.85	0.55	0.39	0.23	3 0.	15		0.0
Actuato	ator is 36	140 1L elect	20	-100				1	.3	0.85	0.55 aximun	0.39	0.23	3 0.	15	0.1	0.0
	ator is 36	140 1L elect	20	-100				1	.3	0.85 M	0.55 aximun	0.39	0.23	3 0.	15	0.1	0.0 t: M
Actuato	ator is 36 r Outpu on (K	140 1L elect	20	–100 actuato	or.	2.91	1.9	1 PI	.3 lug spe	0.85	0.55 aximun on (mn	0.39 allowa	0.23	3 0. erential	15 press	0.1 ure (unit	0.0 t: M _l
Actuatoi ecificati	ator is 36 r Outpu on (K	140 1L elect t force N)	20 ronic a ≤10	–100 actuato	 or. 20	2.91 25	1.9 32	1 Pl	.3 lug spe 50	0.85 M ecification	0.55 aximum on (mn	0.39 n allowa n) —	0.23	3 0. erential	15 press	0.1 ure (unit	0.0 t: M _I
Actuato ecificati 61LSA-0	ator is 36 r Outpu on (K	140 1L elect t force N)	20 ronic a ≤10 3.00	-100 actuato 15 1.50	20 1.16	2.91 25 0.84	1.9 32 0.55	1 Pl 40 0.38	.3 lug spe 50 0.24	0.85 Mecification	0.55 aximum on (mn 80	0.39 a allowa 1) 100	0.23	3 0. erential	15 press	0.1 ure (unit	0.0
Actuator ecification 61LSA-0 61LSA-2	on Output (K	140 1L elect t force N) 8	20 ronic a ≤10 3.00 9.30	-100 actuato 15 1.50 4.92	20 1.16 3.70	2.91 25 0.84 2.66	32 0.55 1.80	1 P 40 0.38 1.26	.3 lug spe 50 0.24 0.80	0.85 Mecification 65	0.55 aximum on (mn 80	0.39 allowa 1) 100	0.23	150	15 press	0.1 ure (unit	0.0 t: M _I
Actuator ecification 61LSA-0 61LSA-2	on Output (K	140 1L elect t force	20 ronic a ≤10 3.00 9.30 9.50	-100 actuato 15 1.50 4.92 7.50	20 1.16 3.70 5.60	2.91 25 0.84 2.66 4.10	1.9 32 0.55 1.80 2.73	1 40 0.38 1.26 1.90	.3 lug spec 50 0.24 0.80 1.23	0.85 Mecification 65 0.82	0.55 aximum on (mn 80 0.58	0.39 1 allowa 100 0.34	0.23	150 	15 press	0.1 ure (unit	3 - -
Actuator ecification 61LSA-2 61LSA-3 61LSA-5 61LSA-6	r Outpu on (K 08 0 20 2 30 3 50 5 65 6	140 1L elect t force	20 ronic a ≤10 3.00 9.30 9.50	-100 -100 -15 -1.50 -1.50 -1.50 -1.50	20 1.16 3.70 5.60	2.91 25 0.84 2.66 4.10 7.00	32 0.55 1.80 2.73 4.72	1 40 0.38 1.26 1.90 3.38	.3 lug spe 50 0.24 0.80 1.23 2.15	0.85 Mecification 65 0.82 1.44 1.90	0.55 aximum 80 0.58 1.02 1.35	0.39 allowa 1) 100 0.34 0.59 0.80	0.23 ble diffe	150 0.26 0.35	200 	0.1 ure (unit	0.0
Actuator ecification 61LSA-0 61LSA-3 61LSA-5	on Output (K	140 1L elect t force	20 ronic a ≤10 3.00 9.30 9.50	-100 actuato 15 1.50 4.92 7.50	20 1.16 3.70 5.60	2.91 25 0.84 2.66 4.10 7.00	1.9 32 0.55 1.80 2.73 4.72	1 40 0.38 1.26 1.90 3.38	.3 specific	0.85 Mecification 65 0.82 1.44	0.55 aximum on (mn 80 0.58 1.02	0.39 1 allowa 1) 100 0.34 0.59	0.23 ble diffe	150 0.26	200	0.1 250	33

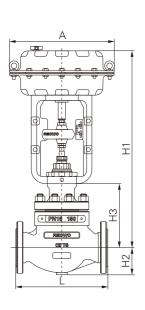
Actuator	Output force		Plug specification (mm)													
specification	(KN)	≤10	15	20	25	32	40	50	65	80	100	125	150	200	250	300
PSL201	1.0	3.50	2.29	1.61	1.15	0.71	0.47	0.30								
PSL202	2.0	9.330	4.92	3.70	2.66	0.80	1.26	0.80								
PSL204	4.5				6.66	4.45	3.17	1.98	1.30	0.85	0.48					
PSL206.1	8.0				10.00	8.19	5.87	3.71	2.46	1.64	0.95	0.59	0.38			
PSL210	10.0								3.00	2.10	1.20	0.80	0.56	0.28		
PSL312	12.0								3.79	2.54	1.48	0.93	0.67	0.34		
PSL314	14.0											1.10	0.80	0.40		
PSL320	20.0											1.61	1.17	0.59		
PSL325	25.0														0.58	0.48

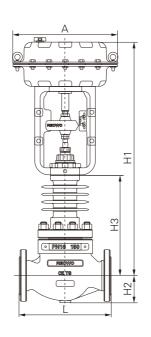
Note: When selecting the detailed electric actuator model, please confirm it with the technology department or sales department of our company.

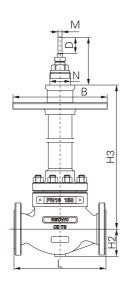
The actuator is PSL electronic actuator.

► Maximum allowable pressure differential, 10T/G series control valve

The actu	ıator is L1	000 Serie	s diaphrag	m actu	ator		Ma	ximum	allowa	ble diffe	rential	pressur	e (unit:	Mpa)
Action type	Actuator Size	supply Kpa G	Spring range				—— Plu	ıg size (s	eat diam	eter) mn	ı ——			
суро	Oize	кра С	Kpa G	40	50	65	80	100	125	150	200	250	300	350
	L103	320 140	80-240 20-100	6.11 1.05	5.1 0.92									
Air to	L104	320 140	80-240 20-100	 2.75	6.3 1.85	6.1 1.15	5.16 0.86	4.19 0.59						
open	L105	320 140	80-240 20-100			 2.25	 1.8	6.3 1.5	5.28 0.92	4.51 0.71	3.35 0.39			
	L106	320 140	80-240 20-100						 2.2	 1.8	6.3 1.3	4.35 0.71	3.69 0.51	3.14 0.38
	L103	320 140	80-240 20-100	6.7 1.15	5.6 1.1									
Air	L104	320 140	80-240 20-100	 2.91	6.9 1.95	10.5 1.25	8.5 1.3	4.51 0.62						
to close	L105	320 140	80-240 20-100			 2.45	 1.9	6.3 1.65	5.72 1	4.91 0.78	3.65 0.42			
	L106	320 140	80-240 20-100						 2.3	 1.9	6.9 1.4	4.75 0.78	3.91 0.56	3.45 0.45


The actuato	r is 361L elect	tronic ad	tuator.			ı	Maximu	m allow	able diff	ferential	pressui	e (unit:	Mpa)
Actuator	Output force					—— Plu	g specific	cation (n	nm) ——				
specification	(KN)	40	50	65	80	100	125	150	200	250	300	350	400
361LSA-08	0.8	2.0	1.2										
361LSA-20	2.0	5.1	3.0										
361LSA-30	3.0	10.0	7.9										
361LSA-50	5.0	10.0	10.0	10.0	10.0	6.8	4.7	2.8					
361LSA-65	6.5			10.0	10.0	10.0	6.8	5.5					
361LSA-100	10.0						10.0	10.0	7.3	5.3	3.4	2.5	1.9
361LSA-150	16.0								10.0	8.5	5.4	4.0	3.0


Actuator	Output force		Plug specification (mm)—										
specification	(KN)	40	50	65	80	100	125	150	200	250	300	350	400
PSL201	1.0	2.6	1.8										
PSL202	2.0	5.1	3.0										
PSL204	4.5	10.0	10.0	9.1	7.10	5.6							
PSL206.1	8.0			10.0	10.0	10.0							
PSL210	10.0						10.0	10.0	7.3	5.3	3.4	2.5	1.9
PSL312	12.0						10.0	10.0	8.3	6.2	4.0	2.9	2.2
PSL314	14.0								9.5	7.3	4.9	3.5	2.6
PSL320	20.0								10.0	10.0	10.0	6.7	4.7
PSL325	25.0								10.0	10.0	10.0	8.3	5.9


Note: When selecting the detailed electric actuator model, please confirm it with the technology department or sales department of our company.

Maximum allowable differential pressure (unit: Mpa)

▶ Size table

Fallinhed	With hi	neumatic	: diaphragm	n actuator
Lquipped	vvitii pi	icultiatic	- diapriragi i	lactuator

Valve Size		— L —		H2	Α	Stan	dard		leat ipation	Extend	ded		CC	Actuator onnection mensions	
(mm)	ANSI 150 PN1.6	ANSI 300 PN4.0	ANSI 600 PN6.4	П2	(Φ)	Н3	H1	НЗ	H1	H1 H3=800	Β (Φ)	н	D	N	M
20	184	194	206	52	290	130	475	265	610	1226	290	130	40	M56X2	M12X1.25
25	184	197	210	52	290	130	475	265	610	1226	290	130	40	M56X2	M12X1.25
32	200	210	220	55	290	145	490	280	625	1226	290	130	40	M56X2	M12X1.25
40	222	235	251	66	290	167	535	302	670	1246	335	130	40	M56X2	M12X1.25
50	254	267	286	76	290	177	545	312	680	1246	370	130	40	M56X2	M12X1.25
65	276	292	311	93	365	218	660	373	815	1367	410	130	45	M68X2	M16X1.5
80	298	317	337	100	365	225	667	380	822	1519	440	130	45	M68X2	M16X1.5
100	352	368	394	115	365	233	675	388	830	1519	490	130	45	M68X2	M16X1.5
125	403	425	460	130	475	285	870	470	1055	1536	560	160	50	M80X2	M20X1.5
150	451	473	508	145	475	300	885	485	1070	1536	630	160	50	M80X2	M20X1.5
200	543	568	610	185	475	334	920	520	1105	1536	760	160	50	M80X2	M20X1.5
250	673	708	775	235	472	475	1212	682	1422			180	50	M100X2	M24X2
300	737	775	819	240	490	490	1230	700	1440			180	50	M100X2	M24X2

▶ Pneumatic actuator

The L1000 Series pneumatic actuator is a multi–spring diaphragm actuator with such features as light weight, small volume, stable output force, etc. Through acting on the diaphragm inside the actuator, the air supply conquers the reverse action force of the spring and makes upward and downward linear movement. When there is no air pressure, the compression spring releases pressure and pushes the push shaft of the actuator to move upwards or downwards. The actuators of this series can be classified into direct action type and reverse action type. According to different diaphragm effective areas and travels, the actuators include the following 5 specifications:

Diaphragm effective area (cm ²)	Travel	Reverse action	Direct action
360	16	L112B/C	L122B/C
360	25	L113B/C	L123B/C
560	40	L114B/C	L124B/C
900	60	L115B/C	L125B/C
1400	100	L116B/C	L126B/C

The action principle of the L2000 linear motion multi-spring piston pneumatic actuator is the same as that of the multi-spring diaphragm actuator. But the L2000 Series actuator replaces the diaphragm by piston, which has solved the problems of the diaphragm actuator being unable to bear relatively high air pressure and easy ageing of the diaphragm, and the actuator can bear higher air pressure. The increase of the air pressure has enhanced the output force of the actuator. The standard configuration is single acting type. Double acting type actuator can also be designed according to the need. According to different piston diameters and travels, the actuators include the following 4 specifications:

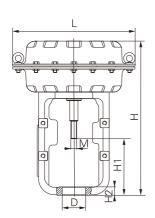
Piston diameter	Travel	Reverse action	Direct action
210	25	L213B/C	L223B/C
270	40	L214B/C	L224B/C
365	60	L215B/C	L225B/C
460	100	L216B/C	L226B/C

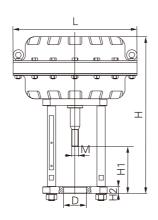
▶ Hand operating mechanism

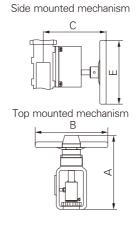
The CO Series side mounted hand operating mechanism is designed according to the worm gear speed reducing principle. It is featured by exquisite appearance and small operating force. After the air supply is turned off at the site, the user can open or close the valve through rocking the handwheel. Compared with the top mounted handwheel, the side mounted handwheel has lower operating force. Therefore we firstly recommend users to use the side mounted handwheel. According to different travels, we provide users with three kinds of side mounted hand operating mechanisms.

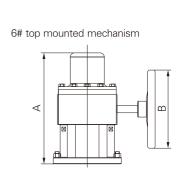
Model	Travel (mm)	Used for actuator
C2	16/25	L102/L103
C3	40	L104
C4	60	L105

The D0 Series top mounted hand operating mechanism adopts the T model thread inside it to transfer the axial movement. After the air supply is turned off at the site, the user can open or close the valve through rocking the handwheel. Compared with the side mounted handwheel, the top mounted handwheel has lower volume, but higher operating force. For valves with DN > 250, the top mounted hand operating mechanism adopts the bevel gear structure to open or close the valve in case of emergency.


According to different travels, we provide users with five kinds of top mounted hand operating mechanisms.


Model	Travel (mm)	Used for actuator
D2	16	L102
D3	25	L103
D4	40	L104
D5	60	L105
D6	100	L106





▶ Connection dimensions of pneumatic actuators

ı	Connection dimensions and	output force of L1000 Series

				—— H1——				Output f	orce (N)
Model	L	Н	ATO	ATC	H2	D	M	B model 40-200KPa	C model 80–240KPa
L102	290	346	130	146	20	56	M14X1.5	1440	2880
L103	290	368	130	155	20	56	M14X1.5	1440	2880
L104	365	442	130	170	24	68	M20X1.5	2240	4480
L105	475	585	160	220	26	80	M24X1.5	3600	7200
L106	590	770	180	280	34	90	M33X2	5600	11200

Connection dimensions and output force of L2000 Series

Top mounted hand operating mechanism													
Model	L	н		H1	H2							D M	Double acting output force
			АТО	ATC				Starting point force	(N)				
L203	290	395	130	155	20	56	M20X1.5	4140	4830	16250			
L204	365	475	130	170	24	68	M20X1.5	6900	8050	28750			
L205	485	645	160	220	26	80	M24X1.5	11540	13630	45250			
L206	590	850	180	280	34	90	M33X2	18000	22268	78000			

Note: The air pressure for the piston cylinder is 500KPa.

Connection dimensions of hand operating mechanism									
Top mounted	hand operating	mechanism	Side mounted	Side mounted hand operating mechanism					
Model	А	В	Model	С	Е				
D2	245	240	C2	230	230				
D3	245	240	C3	230	250				
D4	300	280	C4	260	300				
D5	370	350							
D6	425	400							

► Commonly used accessories of reowo

Positioner (Siemens ABB AZBIL SAMSON YTC SMC)

SIEMENS

Name	Model	Manufacturer	Remark	
	6DR500	SIEMENS	Intelligent(HART)	
Docitionar	V18345	ABB	Intelligent] (three-failure protector)	
Positioner	AVP1/300	AZBIL	Intelligent	
	YT-1000L/R	YTC	Mechanical	
	HEP15/16/17	Homemade	Mechanical	

Solenoid valve (ASCO SMC)

Name	Model	Manufacturer	Remark
	G551H401MO	ASCO.	(220V) Explosion-proof
Solenoid valve	G551AOO1MS	ASCO	(24V) Non-explosion-proof
	SY7210-4G-02-220	CMC	(220V) Non-explosion-proof
	SY7210-4G-02-24	SMC	(24V)
			Non-explosion-proof

Airset (CKD SMC)

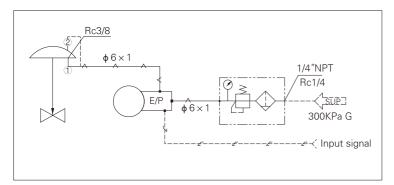
Name	Model	Manufacturer	Remark
	AW30-03BG	SMC	Rc3/8
	AW40-04BG	SIVIC	Rc1/2
Airset	T50	Homemade	Rc3/8
	AW2000-02	потпетнаце	Rc3/8

► Commonly used accessories of reowo

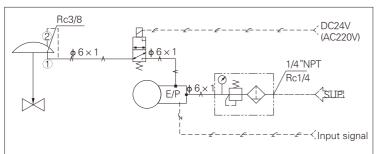
The purpose of selecting valve accessories is to accomplish overall functions and control features of control valves.

The commonly used accessories of reowo include positioner, Airset, solenoid valve, air valve, valve position transducer, limit switch, speed booster (amplifier), lock valve, air storage cylinder, etc. Different accessories have different purposes, so suitable accessories shall be selected according to different control purposes.

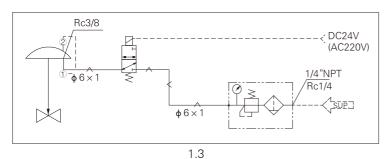
Limit switch (AZBIL YTC)


Name	Model	Manufacturer	Remark
Limit switch	1LS19JB1		Non-explosion-proof (SPDT)
	1LX5001	AZBIL	Explosion-proof dIIBT4 d II CT6(H2)
	1LX5700		d II CT6(H2)
	APL210N	YTC	Non-explosion-proof/ rotary motion
	APL310N	TIC	Non-explosion-proof/ rotary motion

Air valve (SMC) 、Speed booster、Lock valve



Name	Name Model		Remark		
	VPA342-02		Rc1/2 two-position three-way		
Air valve	VPA542-03	SMC	Rc1/2 two-position three-way		
	VPA742-04		Rc1/2 two–position three–way		
Speed booster	IL100-02	SMC	Rc1/4		
Speed booster	IL100-03	SIVIC	Rc3/8		
	IL201	SMC	Single acting (maintaining position)		
Lock valve	IL211	SIVIC	Double acting (maintaining position)		
	CL420H	KOSO	For air bag air supply		


Commonly used control loops of reowo control valves

1.1

1.2

▲ 1.2

- ① * Solenoid valve excitation: positioner controlled Solenoid valve non-excitation: valve to close
 - * Air failure: spring return, valve to close
- ② * Solenoid valve excitation: positioner controlled Solenoid valve non-excitation: valve to open
 - * Air failure: spring return, valve to open

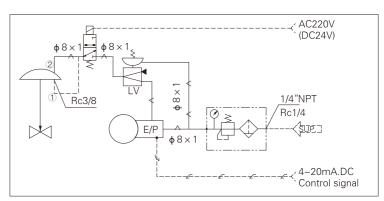
1.3

- ① * Solenoid valve excitation: valve to open Solenoid valve non–excitation: valve to close
 - * Air failure: spring return, valve to close
- ② * Solenoid valve excitation: valve to close Solenoid valve non-excitation: valve to open
 - * Air failure: spring return, valve to open

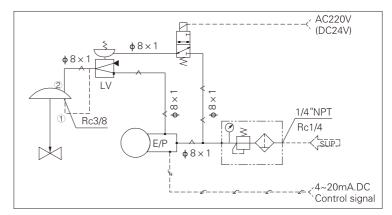
1、Equipped with L1000 actuator or L2000 cylinder actuator

▲ 1.1

- 1 * Signal increase: valve to open Signal decrease: valve to close
 - * Air failure: spring return, valve to close
- ② * Signal increase: valve to close Signal decrease: valve to open
 - * Air failure: spring return, valve to open



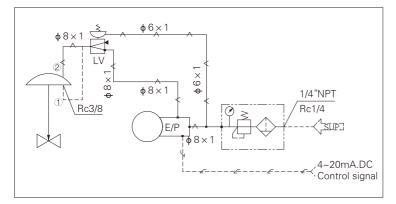
► Commonly used control loops of reowo control valves


1、Equipped with L1000 actuator or L2000 cylinder actuator

1.4

- ① * Solenoid valve excitation: positioner controlled Solenoid valve power failure: spring return, valve to close
 - * Air failure and power non-failure: retain the original position
 - * Signal failure: retain the original position (Note: If the positioner is provided with self-locking function)
- ② * Solenoid valve excitation: positioner controlled Solenoid valve power failure: spring return, valve to open
 - * Air failure and power non-failure: retain the original position
 - * Signal failure: retain the original position (Note: If the positioner is provided with self-locking function)

1.4



1.5


1.5

- 1 * Solenoid valve excitation: positioner controlled
- 2 Solenoid valve power failure: retain the original position
 - * Air failure: retain the original position

Commonly used control loops of reowo control valves

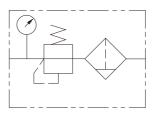
1.6

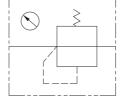
1.7

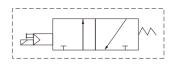
1. Equipped with L1000 actuator or L2000 cylinder actuator

1.6

- 1 * Signal increase: valve to open
 - * Air failure: retain the original position
- 2 * Signal increase: valve to close
 - * Air failure: retain the original position

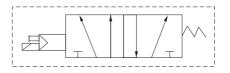

1.7

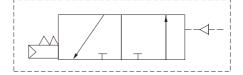

- ① * Solenoid valve excitation: positioner controlled Solenoid valve power failure: control valve to close (OTS<5 seconds)
 - * Air failure: spring return, valve to close
- Solenoid valve excitation: positioner controlled Solenoid valve power failure: control valve to open (STO<5 seconds)
 - * Air failure: spring return, valve to open



► Commonly used control loops of reowo control valves

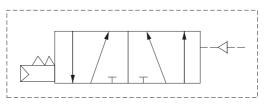
2. The meanings of the symbols are as follows:

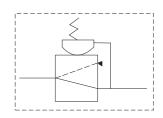




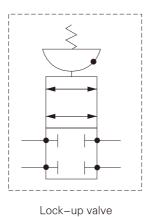
Airset

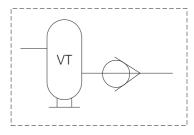
Pressure relief valve

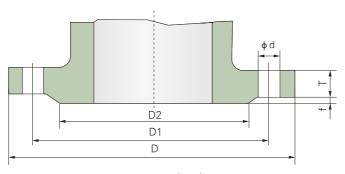

Two-position three-way solenoid valve



Two-position five-way solenoid valve

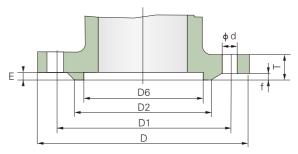

Two-position three-way air valve




Lock-up valve

Air bag

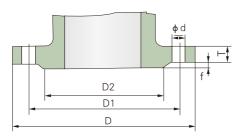
► GB steel pipe flanges JB/T79.1~94

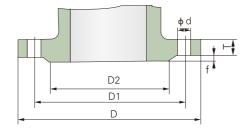

JB/T79.1 PN1.6 2.5MPa (RF)

PN1.6MPa FI	PN1.6MPa Flange deminsion									
CaliberNPS	D	D1	D2	f	Т	φ d	BolttBol			
20	105	75	55	2	14	14	4-M12			
25	115	85	65	2	14	14	4-M12			
32	135	100	78	2	16	18	4-M12			
40	145	110	85	3	16	18	4-M16			
50	160	125	100	3	16	18	4-M16			
65	180	145	120	3	18	18	4-M16			
80	195	160	135	3	20	18	8-M16			
100	215	180	155	3	20	18	8-M16			
125	245	210	185	3	22	18	8-M16			
150	280	240	210	3	24	23	8-M20			
200	335	295	265	3	26	23	12-M20			
250	405	355	320	3	30	25	12-M22			
300	460	410	375	4	30	25	12-M22			
350	520	470	432	4	34	25	16-M27			
400	580	525	485	4	36	30	16-M27			
450	640	585	545	4	40	30	20-M27			
500	705	650	608	5	44	34	20-M30			
600	840	770	718	5	48	41	20-M36			
700	910	840	788	5	50	41	24-M36			
900	1000	OFO	000	E	EO	4.1	24 1420			

PN2.5MPa Flange deminsion								
Caliber NPS	D	D1	D2	f	т	φ d	BolttBol	
20	105	75	55	2	16	14	4-M12	
25	115	85	65	2	16	14	4-M12	
32	135	100	78	2	18	18	4-M16	
40	145	110	85	3	18	18	4-M16	
50	160	125	100	3	20	18	4-M16	
65	180	145	120	3	22	18	4-M16	
80	195	160	135	3	22	18	8-M16	
100	230	190	160	3	24	23	8-M20	
125	270	220	188	3	28	25	12-M22	
150	300	250	218	3	30	25	12-M22	
200	360	310	278	3	34	25	12-M22	
250	425	370	332	3	36	30	16-M27	
300	485	430	390	4	40	30	16-M27	
350	550	490	448	4	44	34	20-M30	
400	610	550	505	4	48	34	20-M30	
450	660	600	555	4	50	34	20-M36	
500	730	660	610	4	52	41	24-M36	
600	840	770	718	5	56	41	24-M36	
700	955	875	815	5	60	48	24-M42	

► GB steel pipe flanges JB/T79.2~4-94

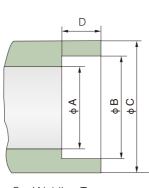

JB/T79.2 PN4.0 6.4 10.0MPa (FM)


PN4.0M	Pa Flang	e demins	ion						
NPS	D	D1	D2	D6	f	E	Т	φd	Bol
20	105	75	55	51	2	4	16	14	4-M12
25	115	85	65	58	2	4	16	14	4-M12
32	135	100	78	66	2	4	18	16	4-M16
40	145	110	85	76	3	4	18	18	4-M16
50	160	125	100	88	3	4	20	18	4-M16
65	180	145	120	110	3	4	22	18	8-M16
80	195	160	135	121	3	4	22	18	8-M16
100	230	190	160	150	3	4.5	24	23	8-M20
125	270	220	188	176	3	4.5	28	26	8-M22
150	300	250	218	204	3	4.5	30	26	8-M22
200	375	320	282	260	3	4.5	38	30	12-M27
250	445	385	345	313	3	4.5	42	34	12-M30
300	510	430	408	364	4	4.5	46	34	16-M30
350	570	510	465	422	4	5	52	34	16-M30
400	655	585	535	474	4	5	58	41	16-M36

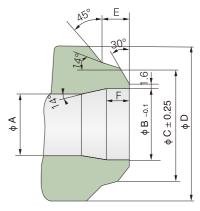
PN6.4MI	Pa Flang	e demins	ion						
NPS	D	D1	D2	D6	f	E	T	φ d	Bol
20	125	90	68	51	2	4	20	18	4-M16
25	135	100	78	58	2	4	22	18	4-M16
32	160	110	82	66	2	4	24	23	4-M20
40	165	125	95	76	33	4	24	23	4-M20
50	175	135	105	88	3	4	26	23	4-M20
65	200	160	130	110	3	4	28	23	4-M20
80	210	170	140	121	3	4	30	23	8-M20
100	250	200	168	150	3	4.5	32	25	8-M22
125	285	240	202	176	3	4.5	36	30	8-M27
150	340	280	240	204	3	4.5	38	34	8-M30
200	405	345	300	260	3	4.5	44	34	12-M30
250	470	400	352	313	3	4.5	48	41	12-M30
300	530	460	412	364	4	4.5	54	41	16-M36
350	595	525	475	422	4	5	60	41	16-M36
400	670	585	525	474	4	5	66	48	16-M42

PN10.0N	/IPa Flang	ge demins	sion						
NPS	D	D1	D2	D6	f	E	Т	φ d	Bol
20	125	90	68	51	2	4	22	18	4-M16
25	135	100	78	58	2	4	24	18	4-M16
32	160	110	82	66	2	4	24	23	4-M20
40	165	125	95	76	3	4	26	23	4-M20
50	195	145	112	88	3	4	28	25	4-M22
65	220	170	138	110	3	4	32	25	8-M22
80	230	180	148	121	3	4	34	25	8-M22
100	265	210	172	150	3	4.5	38	30	8-M27
125	310	250	210	176	3	4.5	42	34	8-M30
150	350	290	250	204	3	4.5	46	34	12-M30
200	430	360	312	260	3	4.5	54	41	12-M36
250	500	430	382	313	3	4.5	60	41	16-M42
300	585	500	442	364	4	4.5	70	48	16-M48
350	655	560	498	422	4	5	76	54	16-M48
400	715	620	558	474	4	5	80	54	16-M48

► ANSI steel pipe flanges ANSI B16.5


Class 150Lb (RF) Flange

Class300/600Lb (RF) Flange


CI	ass 15	50Lb (RF) Fla	ange			CI	ass300	0/600L	.b(RF) Flan	ge				
Class	150 El	ange dn	ninsion													
Class ⊢NPS			D —	D1			02		f ——		т —	φ	d	Bol		
ln	mm	In	mm	ln Di	mm	ln L	mm	In	mm	In	mm	In ^Ψ	mm	Quantity	Diameter	
3" 4	20	3.875	98	2.75	70	1.688	43	0.06	1.6	0.44	11.2	0.625	15	4	1 /2	
1	32	4.25	108	3.125	79.5	2	51	0.06	1.6	0.44	12	0.625	15	4	1 /2	
1½"	40	5	127	3.875	98.5	2.875	73	0.06	1.6	0.56	15	0.625	15	4	1 /2	
2	50	6	152	4.75	120.5	3.62	92	0.06	1.6	0.62	15.9	0.75	19	4	5 /8	
1½"	65	7	178	5.5	139.5	4.12	105	0.06	1.6	0.69	17.5	0.75	19	4	5 /8	
3	80	7.5	190	6	152.5	5	127	0.06	1.6	0.75	19.1	0.75	19	4	5 /8	
4	100	9	229	7.5	190.5	6.19	157	0.06	1.6	0.94	23.9	0.75	19	8	5 /8	
5	125	10	254	8.5	216.5	7.31	186	0.06	1.6	0.94	23.9	0.88	22	8	3 /4	
6	150	11	279	9.5	241.5	8.5	216	0.06	1.6	1	25.4	0.88	22	8	3 /4	
8	200	13.5	343	11.75	298.5	10.62	270	0.06	1.6	1.12	28.6	0.88	22	8	3/4	
10	250	16	406	14.25	368	12.75	324	0.06	1.6	1.19	30.2	1	25	12	7 /8	
12	300	19	483	17	432	15	381	0.06	1.6	1.25	31.8	1	25	12	7 /8	
Close	200 EI	ange dr	ninoion		-									_		
			D —	D1			02 —		f —		т —	_ ф	d ——	Bol		
l In	mm	ln	mm	ln Di	mm	ln L	mm	In	mm	In	mm	In ^Ψ	mm	Quantity	Diameter	
<u>3</u> "	20	4.63	117	3.25	82.5	1.69	43	0.06	1.6	0.63	16	0.75	19	4	1 /2	
1	32	4.88	124	3.5	89	2	51	0.06	1.6	0.69	18	0.75	19	4	5 /8	
1월"	40	6.13	156	4.5	114.5	3.38	73	0.06	1.6	7.07	21	0.88	22	4	5 /8	
2	50	6.5	165	5	127	3.62	92	0.06	1.6	0.88	22.3	0.75	19.22	4	3 /4	
1 ¹ / ₂ "	65	7.5	190	5.88	149	4.12	105	0.06	1.6	1	25.4	0.88	22	4	5 /8	
3	80	8.25	210	6.62	168	5	127	0.06	1.6	1.12	28.6	0.88	22	4	3 /4	
4	100	10	254	7.88	200	6.19	157	0.06	1.6	1.25	31.8	0.88	22	8	3 /4	
5	125	11	279	9.25	235	7.31	186	0.06	1.6	1.38	35	0.88	22	8	3 /4	
6	150	12.5	318	10.62	270	8.5	216	0.06	1.6	1.44	36.6	0.88	22	12	3 /4	
8	200	15	381	13	330	10.62	270	0.06	1.6	1.62	41.3	1	25	12	7 /8	
10	250	17.5	444	15.25	387.5	12.75	324	0.06	1.6	1.88	47.7	1.12	29	16	1	
12	300	20.5	521	17.75	451	15	381	0.06	1.6	2	50.8	1.25	32	16	11 /8	
Class	600 Fla	ange dn	ninsion													
\[\In	S _{mm}	In	D mm	In D1	mm)2 ————————————————————————————————————	In	f mm	In	T mm	┌	d mm	Quantity Bol	Diameter	
3"	20	4.63	118	3.25	82.5	1.69	43	0.25	6.4	0.63	16	0.75	19	4	5 /8	
1	32	4.88	124	3.5	89	2	51	0.25	6.4	0.69	18	0.75	19	4	5 /8	
1 ¹ / ₂	40	6.13	156	4.5	114.5	3.38	73	0.25	6.4	0.88	23	0.73	22	4	3 /4	
2	50	6.5	165	5	127	3.62	92	0.25	6.4	1	25.4	0.75	19	8	5 /8	
2 ¹ / ₂ "	65	7.5	190	5.88	149	4.12	105	0.25	6.4	1.12	28.6	0.88	22	8	3 /4	
3	80	8.25	210	6.62	168	5	127	0.25	6.4	1.25	31.8	0.88	22	8	3 /4	
4	100	10.75	273	8.5	216	6.19	157	0.25	6.4	1.5	38.1	1	25	8	7 /8	
5	125	13	330	10.5	266.5	7.31	186	0.25	6.4	1.75	44.5	1.12	29	8	1	
6	150	14	356	11.5	292	8.5	216	0.25	6.4	1.88	47.7	1.12	29	12	1	
8	200	16.5	419	13.75	349	10.62	270	0.25	6.4	2.19	55.6	1.25	32	12	11 /8	
10	250	20	508	17	432	12.75	324	0.25	6.4	2.5	63.5	1.38	35	16	11 /4	
12	300	22	559	19.25	489	15	381	0.25	6.4	2.62	66.7	1.38	35	20	11 /4	

▶ Valve booy welding joint (ANSI900、1500、2500)

Bw Welding Type

SW Size table 1 of SW welding end Size of welding side joint table 1

DN(mm)	PN(MPa)	Α	В	С	D
	ANSI 900	35	49.1	74	30
40	ANSI 1500	34.4	49.1	74	21
	ANSI 2500	34.4	49.1	84	21
	ANSI 900	48	61.1	92	24
50	ANSI 1500	48	61.1	92	24
	ANSI 2500	38	61.1	103	25
	ANSI 900	67	90	118	30
80	ANSI 1500	67	90	130	30
	ANSI 2500	52	90	133	20

BW Size table 2 of BW welding end2 Size of welding side joint table 2

DN(mm)	PN(MPa)	Α	В	С	D	E	F
	ANSI 900	63			103		9
80	ANSI 1500	63	66.9	89.1	120	20	9
	ANSI 2500	52			133		15
	ANSI 900	84			134		9
100	ANSI 1500	84	87.3	114.3	152	25	9
	ANSI 2500	73			177		15
	ANSI 900	126	128.8	165.2	194	33	9
150	ANSI 1500	126	128.8	165.2	218	33	9
	ANSI 2500	110	120	200	260	35	30
	ANSI 900	190	192		260		
200	ANSI 1500	178	192	260	290	30	20
	ANSI 2500	146	150	220	322	50	

► Attachment 1

GB/T4213-2008 **ANSI B16.104-1976** control valve leakage standard

GB/T4213-200	8 "Pneumatic Contro	ol Valve"						
Shut-off class	Testing medium	Testing pressure	Maximum seat leakage					
I	Agreed by th	ne user and manufac	cturer					
11 III	Water, air or nitrogen	А	$5x10^{-3}x$ valve rated capacity $10^{-3}x$ valve rated capacity					
IV	Water Air or nitrogen	AorB A	10 ⁻⁴ x valve rated capacity					
IV-S1	Water Air or nitrogen	AorB A	5x10 ⁻⁶ x valve rated capacity					
IV-S2	Air or nitrogen	Α	$20 \times 10^{-4} \times \triangle P \times D$					
V	Water	В	$1.8 \times 10^{-7} \times \triangle P \times D$					
VI	Air or nitrogen	А	$3x10^{-3}x\triangle Px$ (leakage in the continued table)					
Continued tabl	е							
Seat size	20 25 40 50	65 80 100 1	50 200 250 300 350 400					
MI/min	0.1 0.15 0.3 0.45	06 09 17 4	10 675 111 160 216 264					

Contin	ueu table													
Sea	nt size	20	25	40	50	65	80	100	150	200	250	300	350	400
Leakage	MI/min	0.1	0.15	0.3	0.45	0.6	0.9	1.7	4.0	6.75	11.1	16.0	21.6	26.4
Leakage	Bubbles/N	/lin	1	2	3	4	6	11	27	45				

Note: A: Testing pressure=0.35MPa. When the allowable differential pressure of the valve is lower than 0.35MPa, use the allowable differential pressure stipulated in the design.

B: Testing pressure is the maximum working differential pressure of the valve.

hut-	off class	┌ Maxi	mum allowa	ble leakage —	Testing Medium	Testing pressure				
II			0.5%C\	/	Air or water at 10–52℃	Maximum working differential pressure ΔP or 50lb/in2(3.5ba differentialpressure, whichever is lower				
III			0.1%Cv	/	Air or water at 10–52℃	Maximum working differential pressure $\triangle P$ or 50lb/in2(3.5ba differential pressure, whichever is lower				
IV			0.01%C	V	Air or water at 10–52℃	Maximum working differential pressure $\triangle \mathrm{P}$ or 50lb/in2(3.5ba differential pressure, whichever is lower				
V				per inch of nominal sure is allowed	Water at 10–52℃	Maximum working differential pressure ΔP				
	_ Valv In	e size ¬ mm	MI/min	Bubbles/min						
	1	IVII/min Bubb		1						
	11/2	38	0.30	2						
	2	51	0.45	3						
	21/2	64	0.60	4						
VI	3	76	0.90	6	Air or water	Maximum working differential pressure △P or 50lb/in2(3.5ba				
VI	4	102	1.70	11	at 10-52℃	differential pressure, whichever is lower				
	6	152	4.00	27						
	8	203	6.75	45						
	10	250	11.1							
	12	300 16.0								
	14	350	21.6							
	16	400	28.4							

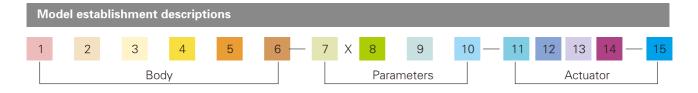
► Attachment 2 Commonly used materials of control valves

Attachmen	t 2 steel grade co	ntrast table of	commonly use	ed materials of control	valves
Material name	(ASTM) ASTM	(JIS) JIS	(DIN) DIN	(GB) GB	Main chemical component
Carbon steel (cast)	WCA、WCB、 WCC	SCPH2	1.0501	WCA、WCB、 WCC	C: ≤0.30
Cr-Mo steel (cast)	WC6 WC9	SCPH21 SCPH32	1.7335	15CrMo 15Cr2MoV	C: ≤0.20 C: ≤0.18
	Cf8	SCS13 SCS13A	1.4308	CF8(GB12230)	C: ≤0.08 Cr: 18.0-21.0
Stainless steel (cast)	CF8M	SCS14 SCS14A	1.4580 1.4581	CF8M(GB12230)	C: ≤0.08 Cr:18.0-21.0 Mo:2.0-3.0
	Cf3		1.4306	CF3(GB12230)	C: ≤0.03 C: 17.2-21.0
	CF3M		1.4435	CF3M(GB12230)	C: ≤0.03 Cr:17.0-21.0
	304	SUS304	1.4301	0Cr18Ni9	C: ≤0.08 Cr:17.0-20.0
	316	SUS316	1.4401 1.4436	0Cr17Ni12M02	C: ≤0.08 Cr:16.0–180 Mo:2.0–3.0
	304L	SUS304L	1.4036	00Cr19NI10	C: ≤0.03 Cr:18.0-20.0
	316L	SUS316L	1.4435 1.4404	00Cr17Ni14Mo2	C: ≤0.03 Cr:2.0-3.0
Stainless steel (rod)	410	SUS410	1.4006	1Cr13	C: ≤0.15 Cr:11.5–13.0
steel (lou)	416	SUS416	1.4005	YICr13	C: ≤0.15 Cr:12.0-14.0
	420	SUS420	1.4021	2Cr13	C:0.16-0.25 C;16.0-18.0
	440B	SUS440B	1.4112	9Cr18Mov	C:0.75-0.95 C:16.0-18.0
	440C	SUS440C	1.4125	9Cr18	C:0.75-0.95 C:16.0-18.0
	630	SUS630 SUS24 (cast)	1.4542	0Cr17Ni4Cu4Nb (17-4PH)	Cr:16.5 Ni:4.0 Cu:3.5

Attachment 3 Anticorrosive materials of valves

							Mate	erial						
Fluid			320 or 304SS	316 3 16SS	Bronze	Monel		Haste Iloy C	#20 SS #20	Titani um	Co-Cr alloy #6	416 SS	440C SS	17-4PH SS
Acetaldehyde Acetic acid (air free) Acetic acid (aerated) Acetic acid vapor Acetone	A C C C A	A C C C	A B A A	A B A A	A B A B	A B A B	I.L A A I.L A	A A A A	A A A A	I.L A A A	I.L A A A	A C C C	A C C C	A B B B
cetylene Ilcohols Iluminum sulfate mmonia mmonium chloride	A A C A C	A A C A C	A A A B	A A A B	I.L A A A	A A A A	A A A A	A A A A	A A A A	I.L A A A	A A I.L A A	A A C A C	A A C A C	A A I.L I.L
Ammonium nitrate Immonium phosphate (univalent) Ammonium sulfate Ammonium sulfite Aniline	A C C C A	A C C C A	A A B A	A A A A	С В В С А	С В В С А	A A I.L A	A A A A	A A A A	A A A A	A A A A	СВССС	C B C C	1.L 1.L 1.L 1.L
Asphalt Beer Benzene Benzoic acid Boric acid	A B A C C	A B A C C	A A A A	A A A A	С В А А	С В А А	A A B I.L B	A A A A	A A A A	I.L A A A	A A I.L A	A B A A B	A B A A B	A A A I.L
Butane Calcium chloride (alkaline) Calcium hypochlorite Carbolic acid Carbon dioxide (dry)	A B C B A	A B C B A	А С В А	А В В А	A C B A A	A A B A	A A C A A	A A A A	A A A A	I.L A A A	A I.L I.L A A	A C C I.L A	A C C I.L A	A I.L I.L A
Carbon dioxide (wet) Carbon disulfide Carbon tetrachloride Carbonic acid Chlorine, gas (dry)	C A B C A	C A B C A	A A B B	A A B B	A C A B B	A B A A	A A B A	A A A A	A A A A	A A I.L C	A A I.L I.L B	A B C A C	A B C A C	I.L A C I.L A
Chlorine, gas (wet) Liquid chlorine Chromic acid Citric acid Coke oven gas	C C C I.L A	C C C C A	C C B A	C C C B A	C B C A B	С С А В	C A C A	B A A A	С В С А А	A C A A	B B B I.L A	СССВА	СССВА	C C B A
Copper sulfate Cottonseed oil Creosote Ethane Ether	C A A B	C A A B	B A A A	В А А А	B A A B	С А В А	I.L A A A	A A A A	A A A A	A A I.L A I.L	I.L A A A	A A A A	A A A A	A A A A
Ethyl chloride Ethylene Ethylene glycol Ferric chloride Formaldehyde	C A A C B	C A A C B	A A C A	A A C A	A A C A	A A C A	A A I.L C A	A A I.L B A	A A A C	A A I.L A A	A A B A	В А С А	B A C A	I.L A A I.L
Formic acid Freon (wet) Freon (dry) Furfural Gasoline (refined)	I.L B B A A	C B B A	В В А А	В В А А	A A A A	A A A A	A A A A	A A A A	A A A A	C A A A	B A A A	C I.L I.L B A	C I.L I.L B A	B I.L I.L I.L A
Glucose	А	А	А	А	А	А	А	А	А	Α	А	А	А	А

Attachment 3 Anticorrosive materials of valves


	Material —													
Fluid	Carbon steel	Cast iron	320 or 304SS	316SS	Bronze	Monel	Haste lloy B	Haste lloy C	SS #20	Titani um	Co-Cr alloy #6	416 SS	440C SS	17-4PH SS
Hydrochloric acid (aerated) Hydrochloric acid (air free) Hydrofluoric acid (aerated) Hydrofluoric acid (air free)	C C B A	C C C	C C C	С С В В	C C C	C C C A	A A A	B B A A	C C B	C C C A	B B B I.L	C C C	C C C	C C C I.L
Hydrogen Hydrogen peroxide Hydrogen sulfide (liquid) Magnesium hydroxide Mercury	A I.L C A A	A I.L C A	A A A A	A A A A	A C C B C	A C A B	A B A A	A B A A	А В А А	A B A A	A I.L A A	A B C A	A B C A	A I.L I.L B
Methanol Methyl ethyl ketone Milk Natural gas Nitric acid	A C A C	A C A C	A A A A	A A A A	A A A C	A A A C	A A A C	A A A A	A A A B	A I.L C A A	A A A C	A A C A C	A A C A C	A C A C
Oleic acid Oxalic acid Oxygen	C C A	C C A	А В А	А В А	В В А	A B A	A A A	A A A	A A A	A B A	А В А	А В А	B B A	I.L I.L A
Petroleum oils (refined) Phosphoric acid (aerated)	A C	C C	A A	B A	A C	A C	A B	A B	A B	A B	A A	A C	A C	A I.L
Phosphoric acid (air free) Phosphoric acid vapor Picric acid Potassium chloride Potassium hydroxide	С С В В	C C C B	A A B A	A A A B A	С С В В	В С С В А	A A A A	A I.L A A	A A A A	B B I.L A	A C I.L I.L	C C B C B	A A C A C	1.L 1.L 1.L 1.L
Propane Rosin Silver nitrate Sodium acetate Sodium carbonate	А В С А А	А В С А	A A B A	A A A A	A C A	A C A	A A A A	A A A A	A A A A	A I.L A A	A A B A	А А В А В	A A B A B	A A I.L A A
Sodium chloride Sodium chromate Sodium hydroxide Sodium hypochlorite Sodium thiosulfate	C A A C C	C A A C C	В А С А	В А С А	A A A B-C C	A A B-C C	A A C A	A A A A	A A B A	A A A A	A A I.L I.L	В А В С В	B A B C B	B A A I.L I.L
Stannous chloride Stearic acid Sulfate liquor (black) Sulfur Sulfur dioxide (dry)	B A A A	B C A A	C A A A	A A A A	С В С С А	В В А А	A A A B	A A A A	A A A A	A A A A	I.L A A A	C B I.L A B	C B I.L A B	1.L 1.L 1.L A 1.L
Sulfur trioxide (dry) Sulfuric acid (aerated) Sulfuric acid (air free) Sulfurous acid Tar	A C C C A	A C C C A	A C C B A	A C C B A	A C B A	A C B B	В А А А	A A A A	A A A A	A B B A	А В В А	B C C C A	B C C C A	I.L C C I.L A
Trichloroethylene Turpentine Vinegar Water (water feed) Water (distilled)	В В С В А	В В С С А	В А А А	A A A A	А А С А В	A B A A	A A A A	A A A A	A A A A	A A I.L A A	A A A A	В А С В В	В А С А В	I.L A A A I.L
Sea water Whiskey and wines Zinc chloride Zinc sulfate	B C C	B C C C	B A C A	B A C A	B A C B	A B C A	A A A	A A A	A A A	A A A	А А В А	C C C B	C C C B	1.L 1.L 1.L 1.L

 $Symbols: A-normally \ suitable; \ B-use \ with \ caution; \ C-unsatisfactory; \ I.L.-lack \ of \ information$

Abstract from 《Handbook of Control Valves》 Second Edition, Instrument Society of America, J.W. Hutchison Editor inChief, Lin Qiuhong and Other Translators December 12, 1984

This table is intended to give only a general indication of how various metals will react when in contact with certain fluids. The recommendations cannot be absolute because concentration, temperature, pressure and other conditions may alter the suitability of a particular metal. Therefore, use this table as a guide only.

► Model establishment descriptions

Body descriptions

1Code	Control valve
1	Linear motion control valve
2Code	Body type

Angle Z type

Three-way Y type

3Code	Trim type
Р	Single-seat
Т	Sleeve single-seat
G	Sleeve double-seat
D	Multi-hole
S	Multi-stage pressure drop
M	Labyrinth
Q	Shut-off
Н	Three-way converging
F	Three-way diverging
W	Diaphragm
Z	Gate

	• • • • • • • • • • • • • • • • • • • •
1	Standard
2	Heat dissipation
3	Extended
4	Cryogenic
5	Bellows
6	Heat preservation iacket
	jacket
5Code	Connection type
5Code	,
	Connection type
1	Connection type Flange
1 2	Connection type Flange Wafer

Bonnet type

4Code

Parameters

6Code	Seal type
Υ	Hard seal
R	Soft seal
F	Fluorine lined

3

Action type
Air to open
Air to close
Double acting

7Code		8Code	9Code	10Code
PN	Flo	w characteristic	DN	Plug size
	D Z K	Equal percentage Linear Quick open	Filled accordactual par	_
			Corio	201

13Code	Model	141:008	pring ange
2	2#	Д 20-	100Kpa
3	3#	В 40-	200Kpa
4	4#	C 80-	240Kpa
5	5#	D 120-	-360 Kpa
6	6#	E 160-	-400Kpa

Actuator descriptions

11Code	Actuator type
L1	Linear motion diaphragm
L2	Linear motion piston
L2	diaphragm Linear motion piston

Hand operating mechanism
Side mounted
Top mounted

THE PEAK OF QUALITY

REOWO°

JINFENG FLUID CONTROL TECHNOLOGY CO.,LTD.

Factory: Puxi Industrial Zone, Oubei, Wenzhou, Zhejiang, China 325102

Tel: +86–577–67379084 Fax: +86–577–66997700 E-mail: reowocv@gmail.com Http://www.reowocv.com